比例的基本性質
如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
合比性質
如果a/b=c/d,那么(a±b)/b=(c±d)/d
等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
相似三角形定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應相等,兩三角形相似(ASA)
2.兩邊對應成比例且夾角相等,兩三角形相似(SAS)
直角三角形被斜邊上的**成的兩個直角三角形和原三角形相似
判定定理3:三邊對應成比例,兩三角形相似(SSS)
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 小學數學教學儀器配置清單。四川私立數學教學教具
體積,幾何學專業術語。當物體占據的空間是三維空間時,所占空間的大小叫做該物體的體積。體積的國際單位制是立方米。一維空間物件(如線)及二維空間物件(如正方形)都是零體積的。
當物體占據的空間是三維空間時,所占空間的大小叫做該物體的體積。示例1:木箱的體積為3立方米;2:電解水時放出二體積的氫與一體積的氧。
常用單位
立方米、立方分米、立方厘米、立方毫米棱長是1毫米的正方體,體積是1立方毫米棱長是1厘米的正方體,體積是1立方厘米棱長是1分米的正方體,體積是1立方分米棱長是1米的正方體,體積是1立方米 四川私立數學教學教具小學數學勾股定律演示模型供應。
數整數、自然數、正數、負數、分數、小數 百分數 [1] 。計數單位和數位計數單位、數位、十進制計數法。數的改寫(省略)1.把多位數改寫成“萬”、“億”直接改寫:先把原數小數點向左移動4位或8位(小數部分的末尾是0要劃掉),然后再加萬或億,中間要用“=”連接。省略尾數改寫成近似數:用“四舍五入法”省略萬位或億位后面的尾數,再在數的后面加萬或億,得出的是近似數,中間要用“≈”連接。 [2] 2.求小數近似數。根據要求,把小數保留到哪一位,就把這一位后面的尾數按照“四舍五入法”省略,如1.5≈2,1.4≈1。中間要用“≈”號。
8、什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等于兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18解比例的依據是比例的基本性質。
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。 ***中小學數學教師教學演示教具。
基礎數學知識在經濟中的應用是源于市場經濟的發展,隨著我國市場經濟的不斷發展,用數學知識來定量分析經濟領域中的種種問題,已成為經濟學理論中一個重要的組成部分。根據分析人士的計算,從1969 年到 1998 年近 30 年間,就有19 位諾貝爾經濟學獎的獲得者是以數學作為研究的主要的方法,而這些人占了諾貝爾經濟學獎獲獎總人數的 63.3%。其原因主要是“數學”在經濟理論的分析中有著尤為重要的作用,其主要作用有以下幾點:
1、運用精煉的數學語言陳述經濟學研究中的假設前提條件,使人一目了然。
2、運用數學思維推理論證經濟學研究的主要觀點,使條理更加清晰,邏輯性更強。
3、運用大量的統計數據讓論證得出的結論更具有說服力。
小學數學平面幾何模型廠家。四川私立數學教學教具
小學數學教學豎式演示數器。四川私立數學教學教具
1. 數學史2. 數理邏輯與數學基礎a:演繹邏輯學(也稱符號邏輯學),b:證明論(也稱元數學),c:遞歸論,d:模型論,e:公理**論,f:數學基礎,g:數理邏輯與數學基礎其他學科。3. 數論a:初等數論,b:解析數論,c:代數數論,d:超越數論,e:丟番圖逼近,f:數的幾何,g:概率數論,h:計算數論,i:數論其他學科。4. 代數學a:線性代數,b:群論,c:域論,d:李群,e:李代數,f:Kac-Moody代數,g:環論(包括交換環與交換代數,結合環與結合代數,非結合環與非結合代數等),h:模論,i:格論,j:泛代數理論,k:范疇論,l:同調代數,m:代數K理論,n:微分代數,o:代數編碼理論,p:代數學其他學科。5. 代數幾何學6. 幾何學a:幾何學基礎,b:歐氏幾何學,c:非歐幾何學(包括黎曼幾何學等),d:球面幾何學,e:向量和張量分析,f:仿射幾何學,g:射影幾何學,h:微分幾何學,i:分數維幾何,j:計算幾何學,k:幾何學其他學科。四川私立數學教學教具