勾股定理,是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。勾股定理現約有500種證明方法,是數學定理中證明方法較多的定理之一。勾股定理是人類早期發現并證明的重要數學定理之一,用代數思想解決幾何問題的**重要的工具之一,也是數形結合的紐帶之一。在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,**早提出并證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。歡迎咨詢!合理運用數學教學教具可以提高教學效率。遼寧數學教學教具配置方案
體積,幾何學專業術語。當物體占據的空間是三維空間時,所占空間的大小叫做該物體的體積。體積的國際單位制是立方米。一維空間物件(如線)及二維空間物件(如正方形)都是零體積的。當物體占據的空間是三維空間時,所占空間的大小叫做該物體的體積。示例1:木箱的體積為3立方米;2:電解水時放出二體積的氫與一體積的氧。常用單位立方米、立方分米、立方厘米、立方毫米棱長是1毫米的正方體,體積是1立方毫米棱長是1厘米的正方體,體積是1立方厘米棱長是1分米的正方體,體積是1立方分米棱長是1米的正方體,體積是1立方米。歡迎咨詢!遼寧九年制數學教學教具學生親自使用數學教學教具,加深對數學原理的理解。
圖形計算公式1、正方形(C:周長S:面積a:邊長)周長=邊長×4C=4a面積=邊長×邊長S=a×a2、正方體(V:體積a:棱長)表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a3、長方形(C:周長S:面積a:邊長)周長=(長+寬)×2C=2(a+b)面積=長×寬S=ab4、長方體(V:體積s:面積a:長b:寬c:高)(1)表面積(長×寬+長×高+寬×高)×2S=2(ab+bc+ca)(2)體積=長×寬×高V=abc5、三角形(s:面積a:底h:高)面積=底×高÷2s=ah÷2三角形高=面積×2÷底三角形底=面積×2÷高6、平行四邊形(s:面積a:底h:高)面積=底×高s=ah
利用直觀教學,培養學生的觀察能力和思維能力。
觀察是正確思維的前提,通過觀察可使學生由感性認識上升到理性認識。在數學教學中如果能充分運用直觀教具進行演示操作,讓學生用眼看、用手摸、用心想。這樣學生通過觀察、分析、綜合、比較、分類等思維活動就會掌握知識的本質特征和內在聯系。例如:在講“三角形的內角和等于180度”時如果讓學生用量角器去量三個內角的度數則太繁瑣也不易得出結果而且也不易驗證其結果的準確性。如果用教具演示就容易多了:讓一個三角形模型的兩內角拼成一個平角(即180度),那么第三個內角必須是平角(180度)減去另兩個內角的和了。這樣通過演示操作學生就很容易理解和掌握“三角形的內角和等于180度”這個定理了。 不同類型的數學教學教具適用于不同的教學內容。
平方是一種運算,比如,a的平方表示a×a,簡寫成a2,也可寫成a×a(a的一次方乘a的一次方等于a的2次方),例如4×4=16,8×8=64,平方符號為2。立方指數為3的乘方運算即表示三個相同數的乘積;a的立方表示a×a×a,簡寫成a3,如5×5×5叫做5的立方,記做53。1、立方也叫三次方。三個相同的數相乘,叫做這個數的立方。如5×5×5叫做5的立方,記做53。2、量詞,用于體積,一般指立方米。3、在圖形方面,立方是測量物體體積的,如立方米、立方分米、立方厘米等常用單位,步驟如下:(1)求出立方體的棱長(2)棱長3=體積(注意:如果棱長單位是厘米,體積單位是立方厘米,寫作cm3;如果棱長單位是米,體積單位是立方米,寫作m3,以此類推。)英文單詞:cube4.立方等于它本身的數只有1,0,-1.5.正數的立方是正數,0的立方是0,負數的立方是負數。拓展:負數的奇數次冪都是負數。數學教學教具的更新換代適應了現代數學教育的需求。包頭數學教學教具
電子數學教學教具的多媒體功能豐富了教學手段。遼寧數學教學教具配置方案
四則運算的意義和計數方法加法意義、減法意義、乘法意義、除法意義、加法、減法、除法、乘法、驗算運算定律與簡便方法、四則混合運算加法交換律(a+b=b+a)、加法結合律(a+(b+c)=(a+b)+c)、乘法交換律(a*b=b*a)、乘法結合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b+c)=a*b+a*c)、連減的性質(a-b-c=a-(b+c))、商不變的性質減法運算性質:a-(b+c)=a-b-c a-(b-c)=a-b+c運算分級:加法和減法叫做一級運算;乘法和除法叫做二級運算(簡略)復合應用題遼寧數學教學教具配置方案