NLS-Cas9-EGFPNuclease是一種融合蛋白,由Cas9核酸酶、核定位信號(NLS)和EGFP(綠色熒光蛋白)組成。這種融合蛋白的特點和科研應用如下:**特點:**1.**無DNA污染**:系統不添加外部DNA,降低了外源DNA污染的風險。2.**高切割效率**:NLS確保Cas9蛋白能夠高效地進入細胞核,從而提高DNA切割效率。3.**低脫靶效應**:由于Cas9核酸酶的瞬時表達,減少了在非目標位點切割的可能性。4.**節省時間**:與需要轉錄和翻譯的mRNA或質粒系統相比,NLS-Cas9-EGFPNuclease可以直接進入細胞核,無需等待轉錄和翻譯過程。5.**EGFP標簽**:EGFP作為報告基因,可用于追蹤或分選轉染細胞,便于通過熒光激起細胞分選(FACS)富集所需基因組編輯的細胞群,減少單細胞克隆和基因分型的勞動和成本。**科研應用:**1.**體外DNA切割篩選**:可以用于篩選高效和特異性靶向的gRNA,通過體外DNA切割實驗來驗證gRNA的效率和特異性。2.**體內基因編輯**:與特定的gRNA結合后,可以通過電穿孔或注射的方式進行體內基因編輯。3.**細胞追蹤和分選**:利用EGFP熒光標記,可以追蹤轉染細胞并進行分選,這對于研究基因編輯后的細胞群體特別有用。
IdeSProtease的分子改造技術主要通過以下幾個方面提高其穩定性和比活性:1.**定向進化**:利用定向進化方法,通過多輪的突變和篩選,獲得具有改善特性的酶變體。定向進化不依賴于大規模突變文庫的構建,而是通過定點突變操作,顯著提高酶分子的穩定性。2.**半理性設計與理性設計**:結合半理性設計和理性設計的方法,通過計算模擬和結構分析,對酶的三維結構進行優化,以提高其在各種環境條件下的穩定性。3.**糖基化修飾**:作為一種新的酶分子穩定性改造技術,糖基化可以提高酶的穩定性,防止酶在逆境中的失活,從而提高其在實際應用中的催化活性。4.**消除蛋白質中的不穩定性弱點**:通過分析蛋白質結構中的穩定性弱點,進行定點突變,以增強蛋白質的整體穩定性。5.**提高比活性**:通過分子改造,提高IdeSProtease的比活性,使其在更低的濃度下就能有效地催化反應,從而提高整體的催化效率。6.**增加底物特異性**:改造后的IdeSProtease除了可以切割人IgG1~4、猴、羊、兔IgG外,還對小鼠IgG2a、IgG3具有特異性切割活性。。
11A型肺炎多糖鼠單抗是針對肺炎鏈球菌11A型多糖的單克隆抗體,具有以下特點:1.**特異性**:鼠單抗具有高度的特異性,能夠識別并結合到11A型肺炎鏈球菌的多糖抗原。2.**制備方法**:通過將肺炎多糖與乙肝表面蛋白的偶聯物作為抗原免疫小鼠,然后從小鼠脾細胞與骨髓瘤細胞融合,篩選出能夠表達特異性抗體的雜交瘤細胞株。3.**應用**:11A型肺炎多糖鼠單抗可用于定量檢測33F型肺炎多糖或乙肝表面蛋白,其制備的腹水型單抗對不同批次的樣本回收率為95%~105%。4.**疫苗開發**:在肺炎鏈球菌疫苗的研發中,多糖蛋白結合疫苗是當前的趨勢,通過將多糖與蛋白偶聯,可以提供更高效價的抗體水平和免疫記憶。5.**免疫反應**:11A型肺炎多糖鼠單抗能夠誘導小鼠產生針對肺炎多糖的血清抗體,這有助于研究肺炎鏈球菌的免疫機制。6.**疾病預防**:肺炎鏈球菌是引起肺炎、腦膜炎和敗血癥等嚴重疾病的主要病原體,11A型肺炎多糖鼠單抗的研究有助于開發更有效的疫苗,預防相關疾病。7.**研究進展**:已有研究報道了使用半合成寡糖結合疫苗候選物,能夠激發對肺炎鏈球菌3型的保護性免疫反應。
酵母重組表達的N-糖苷酶F(PNGaseF)是一種酰胺水解酶,具有以下特點:1.**高效性**:PNGaseF是去除幾乎所有N-連接寡糖從糖蛋白中有效的酶法方法。它能夠在幾分鐘內快速且無偏倚地釋放所有的N-糖鏈,適合后續的色譜或質譜分析。2.**重組酶**:該酶是重組的酰胺酶,能夠從高甘露糖、雜合和復雜寡糖中切割內GlcNAc和天冬氨酸殘基之間的連接。3.**純度**:純度達到95%以上,通過SDS-PAGE和完整ESI-MS進行確定。4.**儲存穩定性**:在含有50%甘油的儲存緩沖液中,好的活性和穩定性可維持長達24個月。5.**使用條件**:可以在原生或變性條件下使用,對于變性條件下的去糖基化,建議添加NP-40以解除SDS的抑制作用。6.**比活性**:具有高達100000U/mL的比活性。7.**His標簽**:產品帶有His標簽,常用于抗體及其相關蛋白的完全去糖基化。8.儲存條件:-25~-15℃保存,有效期1年。9.**無甘油版本**:還提供了無甘油版本的PNGaseF,這有助于在HPLC和質譜分析中獲得結果。10.**酶活定義**:1個酶活力單位指在10μL的反應體系中,37℃條件下1小時從10μg變性RNaseB中除去超過95%的碳水化合物所需要的酶量。這些特點使得酵母重組表達的PNGaseF成為研究和分析糖蛋白糖鏈結構的重要工具。牛痘DNA拓撲異構酶I可以用于PCR產物的克隆,通過其識別序列在引物設計中引入,實現擴增后的DNA片段連接 。
高保真Cas9變體在實際應用中的優勢主要體現在以下幾個方面:1.**降低脫靶效應**:高保真Cas9變體通過減少與非目標DNA序列的結合,從而降低了基因編輯過程中的脫靶風險。這對于減少基因編輯可能帶來的非預期效果至關重要。2.**提高特異性**:通過工程化改造,如SpCas9-HF1、eSpCas9和HypaCas9等變體,通過在DNA相互作用位點引入突變,減少了對目標DNA的非特異性識別和切割。3.**擴展PAM序列兼容性**:一些高保真Cas9變體,如xCas93.7,能夠識別多種PAM序列,從而擴展了可編輯基因組區域的范圍。4.**提高效果**:在臨床中,高保真Cas9變體可以減少由于脫靶效應引起的潛在風險,提高基因的安全性和有效性。然而,高保真Cas9變體也存在一些局限性:1.**編輯效率可能降低**:在提高特異性的同時,可能會有一定的編輯效率。一些高保真變體可能在保持特異性的同時,編輯效率有所下降。2.**結構和功能復雜性**:高保真Cas9變體的結構改造可能增加其結構和功能的復雜性,這可能對實際應用中的穩定性和可預測性帶來挑戰。3.**成本和可用性**:開發和生產高保真Cas9變體可能需要更多的研究和資源投入,這可能影響其在某些應用中的成本效益。泛素分子可以通過其內部的賴氨酸殘基與其他泛素分子形成多聚泛素鏈,這一步驟通常由E3酶催化。Recombinant Human IL-13Ra2 Protein,hFc Tag
E2酶接收來自E1的激起泛素,并在E3酶的協助下將泛素分子轉移到靶蛋白上。dNTP Mix(25 mM each)
重組人血清白蛋白(rHSA),特別是通過植物表達系統生產的細胞培養級產品,以其高純度和質量一致性而受到科研和工業界的重視。以下是高純度rHSA的一些關鍵特點和意義:1.**純度標準**:高純度的rHSA通常意味著蛋白質含量達到99%以上,這通常通過高效液相色譜(HPLC)、SDS-PAGE電泳等方法進行驗證。2.**內素水平**:內素水平是衡量蛋白質純度的一個重要指標。高純度rHSA的內素水平通常非常低(例如,≤0.5EU/ml),這有助于減少細胞培養中潛在的內素污染。3.**宿主細胞蛋白(HCP)殘留**:高純度rHSA的宿主細胞蛋白殘留量非常低,這有助于減少細胞培養中外來蛋白的干擾。4.**無動物源成分**:由于rHSA是通過植物表達系統生產的,因此不含有動物源性成分,這降低了動物源性疾病傳播的風險。5.**批次一致性**:高純度rHSA的生產過程通常在嚴格控制的條件下進行,確保不同批次之間的質量一致性,這對于科學研究和商業生產至關重要。6.**應用廣**:高純度rHSA在細胞培養、生物制藥、藥物載體、疫苗開發等領域有著廣的應用。7.**安全性**:高純度rHSA的生產過程不涉及動物源材料,因此可以降低血源性疾病的風險,提高產品的安全性。dNTP Mix(25 mM each)
N-Boc-Phe-Leu-Phe-Leu-Phe
Recombinant Human CTGF/CCN2 Protein
Rat Eotaxin/CCL11
PAR-1 agonist peptide
Recombinant Mouse MXRA8 Protein
Recombinant Human PKC iota Protein
Recombinant Mouse CD21 Protein
Recombinant Mouse G-CSF
Recombinant Human NKG2C/CD159c Protein
Recombinant Cynomolgus Siglec-3/CD33 Protein