N末端His標簽的泛素蛋白(RecombinantHumanUbiquitinProteinTagged-HisTag,UB)是一種經過遺傳工程改造,在其N末端融合了His標簽的泛素蛋白。以下是這種蛋白的一些特點:1.**His標簽**:N末端His標簽是一種常見的融合標簽,用于提高蛋白質的可溶性和便于通過親和層析進行純化。His標簽通常由6到10個組氨酸(His)組成。2.**重組表達**:這種泛素蛋白通常在大腸桿菌(E.coli)或其他宿主細胞中通過重組DNA技術表達。3.**高度保守**:泛素蛋白是一個76個氨基酸殘基的多肽,在真核生物中高度保守。4.**分子量**:由于N末端添加了His標簽,重組泛素蛋白的分子量會略大于天然泛素(約8.5kDa)。5.**純度**:重組泛素蛋白通常具有高純度(>95%bySDS-PAGE),適合用于各種生物化學和分子生物學實驗。6.**溶解性**:His標簽的添加可以提高蛋白質在水溶液中的溶解性,便于實驗操作。7.**穩定性**:凍干粉形式的重組泛素蛋白在-25~-15℃保存,具有較長的有效期,通常為一年。8.**應用廣**:N末端His標簽的泛素蛋白可用于多種實驗,包括蛋白質泛素化、E3泛素連接酶活性測定、蛋白質相互作用研究等。在這個過程中,E1使用ATP的能量,在自身的活性位點的半胱氨酸殘基與泛素C末端的甘氨酸殘基形成硫酯鍵。SV40 large T antigen NLS
SpCas9蛋白(來自化膿性鏈球菌的Cas9蛋白)在基因編輯中的主要作用是作為核酸酶,能夠精確地切割目標DNA序列。以下是SpCas9在基因編輯中的幾個關鍵步驟和作用:1.**識別和結合**:SpCas9蛋白與一個單導向RNA(sgRNA)結合,形成RNP復合物。這個復合物能夠識別并結合到基因組中與sgRNA互補的特定DNA序列。2.**PAM序列識別**:SpCas9需要一個稱為原間隔子相鄰基序(PAM)的特定序列作為識別目標DNA的先決條件。對于SpCas9,這個PAM序列通常是5'-NGG-3'。3.**DNA切割**:一旦RNP復合物與目標DNA結合,SpCas9就會在PAM序列的3個堿基對的上游位置切割DNA雙鏈,產生一個雙鏈斷裂(DSB)。4.**引發DNA修復**:DNA雙鏈斷裂觸發細胞的DNA修復機制,包括同源定向修復(HDR)和非同源末端連接(NHEJ)。研究人員可以利用這些修復機制來插入、刪除或替換特定的DNA序列。5.**基因修改**:通過HDR,可以在斷裂的DNA兩端引入特定的DNA模板,從而實現精確的基因編輯。而NHEJ通常會導致小的插入或缺失(indel),這可以用來產生基因的敲除或敲入。6.**提高編輯效率**:為了提高SpCas9的編輯效率,研究人員可能會使用優化的sgRNA設計、蛋白質工程或嵌合融合蛋白等策略。
通過EndoS糖苷內切酶S進行糖蛋白的糖鏈結構分析通常涉及以下步驟:1.**樣本準備**:首先,需要獲得糖蛋白的純化樣本,以確保分析的準確性。2.**酶的準備**:準備適量的EndoS糖苷內切酶S,根據實驗需要選擇合適的濃度和緩沖體系。3.**酶切反應**:-將糖蛋白樣本與EndoS酶混合,在適宜的條件下(如pH、溫度等)進行酶切反應。-反應時間根據EndoS的活性和所需的切割程度來確定。4.**終止反應**:在達到預期的酶切時間后,通過加熱或添加適當的緩沖液來終止酶切反應。5.**分離純化**:-使用色譜技術(如凝膠滲透色譜、離子交換色譜等)將酶切后的糖蛋白和釋放的糖鏈分離。-純化過程可能需要多步色譜以確保糖鏈的純度。6.**糖鏈分析**:-對分離得到的糖鏈進行進一步的結構分析,可能包括質譜分析、核磁共振(NMR)波譜分析等。-可以使用高分辨率的質譜技術,如MALDI-TOF或ESI-MS,來確定糖鏈的精確質量。7.**序列鑒定**:通過與已知糖鏈數據庫比對,確定糖鏈的序列和結構。8.**功能分析**:研究酶切后的糖蛋白和釋放的糖鏈對生物活性的影響,如結合特性、免疫原性等。9.**數據分析**:收集所有數據并進行綜合分析,以揭示糖鏈結構與功能之間的關系。
確保重組EGFP(增強型綠色熒光蛋白)在實驗中的穩定性和活性,可以采取以下措施:1.**適當的儲存條件**:重組EGFP通常以凍干粉形式提供,應在-20°C至-80°C的低溫條件下儲存,以保持其穩定性。避免反復凍融,因為這可能導致蛋白質結構的破壞和活性的喪失。2.**正確的復溶方法**:在無菌條件下,使用推薦的溶劑(通常是無菌去離子水或適當的緩沖液)復溶EGFP,并避免使用含有蛋白酶或氧化劑的溶液。3.**避免光照**:EGFP對光照敏感,尤其是在紫外和藍光下。在處理和儲存時應避光,使用遮光容器或在低光照條件下操作。4.**使用保護劑**:在某些情況下,添加蛋白穩定劑(如甘油、蔗糖或BSA)可以提高EGFP的穩定性。5.**避免極端pH**:EGFP的活性和穩定性可能受到pH值的影響。在實驗中使用接近其等電點pH值的緩沖系統,通常是中性或略偏堿性的條件。6.**控制溫度**:避免將EGFP暴露在極端溫度下,尤其是在高溫條件下,因為這可能導致蛋白質變性。7.**避免物理剪切力**:在操作過程中,避免劇烈攪拌或超聲處理,因為這些可能會導致蛋白質結構的破壞。將MAGE-A3基因序列克隆到一個表達載體中,該載體通常包含有抗生物質抗性基因、啟動子、核糖體結合位點。
確保N末端His標簽的泛素蛋白在實驗中的活性和穩定性,需要考慮以下幾個關鍵因素:1.**儲存條件**:按照生產商的建議,將重組泛素蛋白凍干粉儲存在-25~-15℃的條件下,以保持其穩定性和活性。2.**避免反復凍融**:多次凍融會降低蛋白質的穩定性和活性。建議在使用后將剩余的蛋白質分裝并儲存在推薦的條件下。3.**復溶條件**:按照產品說明,使用無菌蒸餾水或推薦的緩沖液將蛋白質復溶至適當的濃度。通常建議添加0.1%BSA以增加蛋白質的溶解度和穩定性。4.**使用前離心**:在使用前,將蛋白質溶液短暫離心,以確保所有組分都沉積在底部,避免取樣時的不均勻性。5.**工作濃度和體積**:根據實驗設計,將蛋白質稀釋至工作濃度,并盡量使用小體積以減少蛋白質的降解。6.**避免蛋白降解**:在實驗過程中,使用蛋白酶抑制劑以防止蛋白降解酶對重組泛素蛋白的降解。7.**避免氧化**:在蛋白質的儲存和使用過程中,避免氧化,可以通過添加抗氧化劑如DTT或TCEP。8.**避免污染**:使用無菌技術操作,確保實驗器材和環境的清潔,避免微生物污染。9.**操作環境**:在4℃或冰上進行操作,以減少蛋白質降解和非特異性相互作用。泛素連接酶E3識別特定的靶蛋白,并促進E2上的泛素轉移到靶蛋白的賴氨酸殘基上,形成泛素化標記。Recombinant Human FGFR3 beta (IIIb) Protein,His-Avi Tag
與Taq DNA Polymerase不同,Pfu DNA Polymerase產生的PCR產物為平滑末端,無3'端"A"突出。SV40 large T antigen NLS
NLS-Cas9Nuclease是一種重組的化膿性鏈球菌Cas9蛋白,它在N端和C端都添加了核定位信號(NLS),這使得它能夠更有效地進入細胞核并進行基因組編輯。這種蛋白與CRISPR/Cas9系統的引導RNA(gRNA)形成穩定的核糖核的蛋白(RNP)復合物,可以在進入細胞后立即定位到細胞核,從而誘導特定的DNA雙鏈斷裂,實現基因編輯。與傳統的mRNA或質粒系統相比,使用NLS-Cas9Nuclease不需要轉錄和翻譯過程,因此可以避免將外源DNA插入基因組的風險,這對于基因編輯尤其有用。NLS-Cas9Nuclease的特點包括:1.無DNA:系統不添加外部DNA,降低了插入外源DNA的風險。2.高切割效率:雙NLS確保Cas9蛋白高效進入細胞核。3.低脫靶效應:Cas9核酸酶的瞬時表達提高了切割的特異性。4.節省時間:無需轉錄和翻譯過程。這種核酸酶可以用于體外DNA切割篩選高效和特異性靶向gRNA,以及通過電穿孔或注射與特定gRNA結合時的體內基因編輯。產品的保存條件通常是在-25~-15℃,有效期為一年。使用時,可以根據推薦的反應體系進行體外DNA裂解實驗,并通過瓊脂糖凝膠電泳檢測消化效率。具體產品的詳細信息和應用指南,可以參考金斯瑞生物科技有限公司、NEB、金斯瑞、YEASEN和Novoprotein等公司提供的資料。SV40 large T antigen NLS
PAR-1 agonist peptide
Recombinant Mouse MXRA8 Protein
Recombinant Human PKC iota Protein
Recombinant Mouse CD21 Protein
Recombinant Mouse G-CSF
Recombinant Human NKG2C/CD159c Protein
Recombinant Cynomolgus Siglec-3/CD33 Protein
Recombinant Human GM-CSF R alpha Protein
rTEV Protease重組煙草蝕紋病毒蛋白酶
Recombinant Cynomolgus TPBG/5T4 Protein