數據采集系統查找您想要的產品系列全部產品分布式數據采集系統集中式數據采集系統堅固型數據采集系統便攜式數據采集系統無線數據采集系統,主要功能:?故障軸承模擬:軸承內圈故障、軸承外圈故障、軸承滾動體故障、軸承保持架故障、軸承綜合故障(深溝球軸承)。?常見機械故障:機械松動、不對中等試驗。?不同轉速下的軸承故障頻率識別。?滾子軸承故障模擬(可選)聲強分析?記錄聲強原始時域數據?支持聲強的實時測試、顯示與事后處理分析聲壓分析?支持聲壓的實時測試、顯示與事后處理分析?可以提供聲壓時域曲線、頻域線譜與倍頻程等多種顯示方式?在聲壓倍頻程顯示方式中,提供1/1、1/3、1/6、1/12、1/24等多種頻帶設置方式?提供A、B、C、D、Wa、Wc等多種計權方式高速軸承故障機理研究模擬實驗臺。海南在線故障機理研究模擬實驗臺
TwinRotorSimulator(雙轉子模擬器)VibrationMonitoringandDiagnosticsLab(振動監測和診斷實驗室)MachineryFaultSimulatorsystem(機械故障模擬系統)MachineryFaultSignatureSimulator(機械特征模擬實驗臺)Simulateurdepronosticsderoulements(軸承壽命模擬器)bearingfaultsimulator(軸承故障模擬器)MachineryFaultSimulatorShortVersion(機械故障模擬器簡單版)MachineryFaultSimulatorMicroVersion(機械故障模擬器微型版)Desbancsd’essaisdédiésàl’analysevibratoire(用于振動分析的測試臺)FreeAndForcedVibrationAnalysisSetupBearingFaultDemonstrator(滾子軸承故障演示臺)VibrationAnalysisTrainer(振動分析培訓臺)Rotorbearingfailuremechanismresearchsimulationtestbench(轉子軸承故障機理研究模擬實驗臺)Comprehensivefaultsimulationtestbedforrotorandgearbox(轉子、齒輪箱綜合故障模擬實驗臺)Beltdrivefaultsimulationkit(皮帶故障套件)DataAcquisitionSystem(數據采集系統)Simuladordefallasdeequilibrioyrodamientos(動平衡和軸承模擬器)河北故障機理研究模擬實驗臺公司故障機理研究模擬實驗臺的研發過程充滿挑戰。
MachineVibrationAnalysisTrainer(機器振動分析訓練器)ExtendedVibrationAnalysisTrainingSystem(拓展振動分析培訓系統)MachineVibrationAnalysisMulti-ModeTrainer(機械振動分析多模式訓練器)AdvancedVibrationAnalysisTrainingSystemPlus(高級振動分析培訓系統)PredictiveMaintenanceVibrationAnalysisTrainingSystem(預測性維護振動分析培訓系統)BalancingandBearingFaultSimulator(動平衡與軸承故障模擬器)ShaftAlignmentTrainer(軸對中訓練臺)RotatingmachinerytrainingSimulator(旋轉機械模擬器)Highendmodelfortraininghighspeedrotordynamics(用于訓練高速轉子動力學的**模型)
PT700在內轉子驅動電機機座上設置有內轉子驅動電機,內轉子驅動電機通過主聯軸器和內轉軸連接,套在內轉軸上的內轉子左輪盤,內轉子左支承結構,內轉子右輪盤和內轉子右支承結構沿中心軸線依次連接;套在外轉軸上的外轉子左支承結構,外轉子左輪盤和外轉子右輪盤沿中心軸線依次連接.本發明采用可調剛度的彈性支承,可實驗支承剛度對雙轉子動力特性的影響;可以模擬航空發動機雙轉子質量不平衡,轉子碰摩和支座松動等機械故障.轉靜件碰摩狀態下的葉片振動載荷和振動特性測試分析,基于彈性基礎的內外雙轉子故障模擬實驗臺,涉及航空發動機實驗裝置.本實驗臺的結構主要是:在外轉軸內設置有內轉軸,兩者中心軸線重合,通過中介支承結構機故障機理研究模擬實驗臺的研究具有重要的學術價值。
:為了解決變分模態分解的參數選取問題并更準確的提取軸承故障特征信息,提出了一種多目標優化變分模態分解(VMD)的軸承故障診斷方法。建立了以信息熵、相關系數和峭度的目標函數以及綜合評價指標,將VMD的參數優化問題轉換成多目標優化的帕累托(Pareto)問題。首先,利用多目標粒子群優化算法(MOPSO)對三個目標函數進行尋優,得到VMD參數組合的比較好Pareto解集;其次,對Pareto解集用綜合評價指標對其進行評價,確定出VMD的比較好參數組合;利用已確定的比較好參數組合對軸承故障信號進行VMD分解,得到若干本征模態分量(IMFs);再利用綜合評價指標選擇出比較好IMF,提取故障特征。仿真信號和實際軸承振動信號分析結果表明所提方法的有效性。關鍵詞:變分模態分解;故障診斷;信息熵;峭度;多目標粒子群優化算法故障機理研究模擬實驗臺是故障研究的前沿陣地。山東電子故障機理研究模擬實驗臺
故障機理研究模擬實驗臺的運行需要精心維護。海南在線故障機理研究模擬實驗臺
針對滾動軸承故障類型和損傷程度難以識別的問題,提出一種基于變分模態分解(VariationalModeDecomposition,VMD)和Gath-Geva(GG)模糊聚類相結合的滾動軸承故障分類方法。該方法通過對已知滾動軸承故障信號進行VMD分解,利用分量頻率中心的大小確定分解模態的數量,將所得本征模態分量組成初始特征矩陣進行奇異值分解;選取3個比較大奇異值作為GG聚類算法的輸入,得到已知故障信號的隸屬度矩陣和聚類中心;通過待測信號初始隸屬度矩陣與已知故障信號聚類中心之間的海明貼近度識別滾動軸承的故障類型和損傷程度。通過滾動軸承振動數據對所述方法的有效性進行驗證,瓦倫尼安教學設備桌面式齒輪故障教學平臺便攜式轉子軸承教學實驗臺桌面式轉子軸承故障教學平臺轉子動力學研究實驗臺故障機理研究教學平臺轉子軸承綜合故障模擬實驗臺診斷臺轉子軸承教學平臺海南在線故障機理研究模擬實驗臺