MachineVibrationAnalysisMulti-ModeTrainer(機械振動分析多模式訓練器)AdvancedVibrationAnalysisTrainingSystemPlus(高級振動分析培訓系統)PredictiveMaintenanceVibrationAnalysisTrainingSystem(預測性維護振動分析培訓系統)BalancingandBearingFaultSimulator(動平衡與軸承故障模擬器)ShaftAlignmentTrainer(軸對中訓練臺)RotatingmachinerytrainingSimulator(旋轉機械模擬器)Highendmodelfortraininghighspeedrotordynamics(用于訓練高速轉子動力學的**模型)GearboxDynamicsSimulator(齒輪箱實驗臺)增速齒輪箱故障機理研究模擬實驗臺。機電故障機理研究模擬實驗臺用途
1、旋轉機械振動分析及故障診斷試驗平臺 2、柔性轉子振動試驗臺 3、剛性轉子振動試驗臺 4、行星齒輪故障診斷試驗平臺 5、齒輪故障診斷試驗發動機轉子動力學實驗平臺轉子動力學綜合教學實驗系統是針對高等院校和科研院所力學與機械類專業轉子動力學等相關課程而設計的實驗教學和研究用儀器。它通過設定柔性轉子軸系不同的轉動條件和結構形式來模擬旋轉機械各種運行狀態和多種故障類型,通過測量與分析系統可完成轉子動力學的多項基本實驗,動平衡實驗和故障診斷與分析實驗。系統的硬件和軟件設計成開放型的上海VALENIAN故障機理研究模擬實驗臺介紹增速齒輪箱故障機理研究模擬實驗臺的組成部分。
在機械設備運行過程中,零部件的運動產生振動和沖擊,包含著豐富的設備健康運行狀態信息[1-2]。振動沖擊往往是由零部件之間的碰撞敲擊產生,其幅值大小、出現位置表現著設備的健康狀態。在航空、船舶、石油化工等領域的機械設備中,包括航空發動機、內燃機、齒輪箱、往復壓縮機、泵等,沖擊振動是常見的故障模式[3-5]。因此,監測機械振動信號中的沖擊成分可有效反映機械部件運行的健康狀態,對設備進行故障診斷具有重要的意義。振動信號沖擊成分呈現多頻段分布,并伴隨著噪聲干擾,不同頻率成分的沖擊在時域混疊等問題[8-9]。以上情況,導致了復雜機械設備的實際振動監測信號的分析難度,造成了早期故障沖擊特征難以捕捉等問題。更進一步地,其中一些往復機械(柴油機、往復壓縮機、往復泵等)的振動信號的沖擊成分在時域分布上呈現周期性間隔特點,與曲軸特定轉角對應[10-12],單從回轉設備的頻域分析方法在此并不適應。由于實際振動信號的頻域復雜性和時域多沖擊分布特點,因此需要對采集的振動沖擊信號進行頻域分解和時域沖擊的提取,為后續特征提取和故障診斷奠定基礎。
沖擊識別與分解對柴油機狀態特征提取具有重要價值。現有常用方法利用沖擊頻域特性,通過頻域分解與重構識別并分解沖擊,在分解復雜多沖擊非平穩信號存在頻段混疊、時域沖擊重合等問題。本研究提出了一種變分時頻聯合分解(VTFJD)方法,目的在于提取多源沖擊振動信號中沖擊成分。首先采用改進變分模態分解(VMD)方法對多沖擊振動信號進行頻域分解,得到各分解模態信號;其次,提出了變分時域分解方法(VTD),用于提取各分解模態信號中的沖擊成分;***,對時頻聯合分解信號進行篩選,獲得振動波形中多源沖擊成分時頻域信息。同時,針對VMD和VTD中參數選擇問題,分別提出了參數優化選擇方案。仿真信號和實際柴油機連桿軸瓦振動信號特征提取結果表明,VTFJD具有出色的多沖擊信號自適應時頻分解能力,具有沖擊自動識別與分解提取能力。關鍵詞:信號分解;振動與沖擊;柴油機;連桿軸瓦磨損故障在故障機理研究模擬實驗臺中,怎樣實現數據的實時監測和分析?
提出一種往復式壓縮機示功圖處理方法以及基于卷積神經網絡機器學習的智能往復式壓縮機故障診斷流程。使用等參元歸一化方式處理示功圖,處理后的樣本經卷積神經網絡分類識別,可實現往復式壓縮機自學習、智能故障診斷。使用等參元歸一化方法,可無需考慮工藝變化、環境改變等造成示功圖圖形改變的因素,這樣示功圖的處理方式有助于后續的神經網絡智能識別擁有更高的準確率、更強普適性。經模擬和實測數據驗證齒輪箱柔性軸系故障植入綜合試..核電臥式轉子振動特性試驗平臺電機對拖齒輪箱故障植入試驗平臺微型軸承及動平衡試驗平臺軋銀振動特性試驗平臺軌道軸承振動及疲勞磨損試驗平臺核電立式軸承振動特性試驗扭轉振動試驗平臺平行齒輪箱疲勞磨損試驗平臺水泵故障植入試平臺齒輪箱傳動特性試驗平臺高速柔性轉子振動試驗平臺行星齒輪箱疲勞磨損試驗平臺軸承疲勞磨損試驗平臺單級便攜式行星齒輪箱故障植入實驗臺,平行軸齒輪箱故障機理研究模擬實驗臺 。江蘇故障機理研究模擬實驗臺定制
故障機理研究模擬實驗臺的可靠性備受認可。機電故障機理研究模擬實驗臺用途
往復壓縮機作為工業生產中的重要組成設備,保證其正常運行具有極其重要的實際意義。根據相關研究統計,氣閥故障大約占到了往復壓縮機故障總數的60%[1]。因此,有必要對往復壓縮機氣閥故障進行深入的分析和研究。往復壓縮機氣閥在工作中會受到摩擦,沖擊等多種因素的干擾,導致其振動信號具有強烈的非線性,非平穩性特征[2]。針對上訴信號,目前多采用小波分析、經驗模態分解(EMD)、變分模態分解(VMD)、熵值法、分形方法等對其進行分析研究,其中,多重分形方法不僅可以深層次的描述氣閥信號非平穩、非線性特征,同時可以描述氣閥振動信號的自相似性,進而可以更***準確的提取往復壓縮機氣閥的故障特征機電故障機理研究模擬實驗臺用途