系統各功能工況的概述,該主機采用的是立式滿液式蒸發器,該蒸發器配有旋浮式攪拌裝置強化換熱,蓄冰時促進冰晶生成,設備外形如下:據廠家了解,大型離心機的機頭采用的是日本三菱品牌,小型螺桿機機頭采用國內有名的漢鐘品牌,整體機組為中機能源的專業技術產品。以下對本機組的三個功能工況做簡單的介紹,系統原理圖如下:3.1.1制冷水工況可同常規機組制取供空調末端直接使用的空調工況的冷凍水,本報告不再詳述。制冰晶工沉,同上述原理,本系統采用的是以約3.5%溶度改性抑制性乙二醇水溶液或丙二醇水溶液替代水作為供冷(蓄冷)介質,溶液集載冷、蓄冷、供冷于一體,蓄冰時溶液在蒸發器(換熱器或冰晶生成器)中降溫析出冰晶,溶液析出冰晶后成為流態冰,此時流態冰平均質量溶度2.5~3.5%,在蓄冰槽內冰晶與溶液自然分離溶液在下部,冰晶在上部。動態冰蓄冷可以應對電力系統的負荷波動,提高電網的穩定性。四川乳業動態冰蓄冷系統
與空調機組相比,冰蓄冷空調系統中的壓縮冷凝機組、冷卻塔系統和蒸發器的總成本差不多,而動態冰蓄冷系統只需增加一個蓄冰槽,蓄冰槽可采用土建結構或鋼架結構。動態冰蓄冷空調系統常用的運行策略有:制冷主機優先、蓄冷設備優先、共享控制。制冷機優先級:先設置制冷機滿負荷運行,不工作時再用蓄冰設備彌補。動態冰蓄冷設備優先級:先設置冰蓄冷設備滿負荷運行,釋放冷能,再用制冷主機彌補故障。份額控制:冰蓄冷空調系統的制冷主機和冰蓄冷裝置按照一定的份額共同提供制冷。四川乳業動態冰蓄冷系統動態冰蓄冷可以減少傳統空調系統對化石燃料的依賴,降低碳排放。
刮刀式換熱器的內表面(刮刀葉片接觸面)處理要求非常光滑,而且刮刀葉片與換熱壁面之間的接觸必須緊密。另一方面,由于由純水生成的冰晶顆粒較粗,而且容易聚集硬化,更容易導致堵塞,因此此種制冰方法中往往需要在水中添加一定濃度的冰點抑制劑,如乙二醇、NaCl等。由此又引入了對設備材料的防腐問題。換熱器內表面和整個刮刀組件都是長期浸泡在乙二醇(或NaCl等其他鹽類)水溶液中,并且處于高流速的不利腐蝕條件下,因此金屬材料必須具有特殊的耐腐蝕性能。刮刀葉片一般采用塑料材料,在與金屬換熱避免長期高速摩擦的情況下,必須具有高耐磨的性能。
系統特點:與靜態蓄冰系統比較,具有下列優點:無乙二醇循環系統,系統簡單,可靠性高。采用制冷劑直接蒸發制冰,制冰效率高,制冰速度快。循環水與冰直接接觸式融冰,融冰效率高,取冷速度快。制冰時在蒸發板上形成片狀冰,結冰過程可見,蓄冰槽中冰量也可見融冰特性較好,在融冰初期和終期均可保持恒定的出水溫度??蓪崿F蓄冷槽和蓄熱槽共用,系統簡單,機房面積省,系統初投資省由于機組蓄冰效率高,系統運行費用與其它蓄冰形式相比較低。由于系統簡單,蓄冰與儲冰裝置分離,維護簡單,蓄冰裝置使用壽命長,無需更換,維護費用低。無償制 45℃-65℃生活熱水。動態冰蓄冷可以通過冷卻水的回收利用實現節水效果。
技術先進性:從過冷水到冰漿,全部實現管道化循環泵輸送,系統構成簡單,設備(制冷主機、蓄冰槽等)布置靈活,機房空間緊湊。使得對既有水蓄冷系統進行冰蓄冷改造變為現實,解決在不增加占地空間的前提下大幅度增。加蓄冷的系統擴容需求。換熱環節不結冰,結冰環節不換熱,換熱與結冰分離的技術原理使得動態冰蓄冷可以采用高效率的板式換熱器進行制冰,換熱效率大幅度提升。因換熱效率的提升使得制冷主機的乙二醇出水溫度提升至-3℃,制冰工況下的系統能效比提升15%,即夜間蓄冰即可省電15%。動態冰蓄冷可以提高空調系統的運行效率,延長設備的使用壽命。廣西流態化動態冰蓄冷保溫
動態冰蓄冷可以應用于數據中心等對冷卻要求較高的場所。四川乳業動態冰蓄冷系統
制冷系統 COP 高、能耗降低。其制冷蒸發溫度可以繼續保持在-5℃~-8℃之間而且在整個蓄冰過程中保持穩定不下降。相對于冰球、盤管式冰蓄冷中-10℃以下的蒸發溫度(而且隨著蓄冰量的增加逐漸下降)可以顯著提高系統COP。融冰速度快、負荷響應靈敏。由于動態冰蓄冷制出的冰以冰漿形式客觀存在因此在融冰釋冷時冰晶與水之間接觸面積大,融化速度快,可以快速響應空調末端負荷的變動。地面積小、場地適應性強。動態冰蓄冷無需盤管、冰球等預制設備,因此蓄冰槽有效利用率提高,占地空間減小,而且對空間形狀要求降低,場地適應性增強。四川乳業動態冰蓄冷系統