系統存在的問題及潛在的風險,從技術原理上來看,冰晶式動態蓄冰相對于靜態蓄冰有一定的技術先進性,但之所以該系統未成為目前市場的主流蓄冰形式,主要是在系統的穩定性及可靠性上也存在潛在的風險,甚至有因為冰晶堵塞導致系統不能使用的失敗案例。以下對該系統存在的潛在問題分析如下:溫度傳感的延遲性可能造成結冰誤差,因為溫度傳感的延遲性,當傳感器檢測的溫度<實際溫度時,溶液不會結冰;當傳感器檢測的溫度>實際溫度時,溶液結冰過多,溶液發生蒸發器冰堵、管道、閥門、水泵葉輪磨損的問題,甚至堵塞。獨特的制冷原理,確保冰塊持久耐用。珠海冷水式動態冰保溫
動態冰系統制冰蓄冷時,如有連續且較大的空調負荷時,宜另設基載主機單獨向空調系統供冷,以獲取較高的制冷效率,降低能耗。制冷主機的制冷能力隨著蒸發溫度降低而減少,一般制冷機出液溫度每降低1℃。雙工況制冷主機在制冷和制冰兩種工況下交替運行,因此應比一般冷水機組更具有可靠的穩定性和良好的調節性能,并要求機組在兩種工況條件下均能達到較高的能效比。應配置較完善的檢測及自動控制裝置進行優化控制,解決各工況的轉換操作、蓄冷系統供冷溫度和空調供水溫度的控制以及雙工況主機和蓄冷裝置供冷負荷的合理分配。刮刀擾動式動態制冰技術中重點的技術仍然是防堵塞技術。由于刮刀擾動十分強烈,過冷狀態下的水溶液非常容易在換熱壁面上結晶,一旦在壁面上結晶,刮刀葉片就面臨被堵塞甚至被打碎的可能。深圳低碳動態冰節能技術動態冰在電力高峰時段將冰融化提供空調用冷。
冰蓄冷技術是利用夜間電網低谷時間,將冷媒(通常為乙二醇的水溶液)制成冰將冷量儲存起來,白天用電高峰期融冰,將冰的相變潛熱用于供冷的成套技術。這種蓄能措施能夠有效地利用峰谷電價差,在滿足終端供冷(熱)需要的前提下降低運行成本,同時對電網的供需平衡起一定的調節作用。公共建筑耗能遠高于民用建筑,由于工作時間的限制,電能消耗主要集中在白天,導致用電高峰期電力緊張,但是夜晚低谷期電力不能得到充分利用。為了轉移電力需求,平衡電力供應,國家采用分時計價的政策來推動離峰電力的積極性。冰蓄冷空調利用夜間低谷電力制冰儲能以減少用電高峰期空調用電負荷和系統裝機容量。
冰球式蓄冰系統,原理:利用內充有可相變介質的小圓球(為增大熱交換面積,一些廠家在球體上會再設有若干個小的凹陷,后統稱冰球)來蓄冷,并將冰球儲存于專門的罐體中,通過循環于主機與罐體間的低溫載冷劑,將冰球內的介質完成相變,從而儲存冷量;釋冷時,通過循環于換熱器(二次側為空調末端)和罐體間的載冷劑,將冷量釋放到空調末端,從而形成一個完整的蓄冷、釋冷的過程。屬于中國較早引進的系統,因各種缺陷,如冰球破損多,新建項目已應用較少。動態冰將蓄冰裝置中的水制成冰,白天在空調用電高峰時段利用融冰取冷滿足部分空調負荷。
動態冰蓄冷技術中的冰漿生成熱交換器可以采用制冷劑直接蒸發,省去了冰球、盤管式冰蓄冷中必須采用的不凍液換熱循環,因此帶來換熱設備和材料費用的節省,降低了初投資費用。無論從能效還是經濟角度出發,動態冰蓄冷技術均有優于傳統冰球、盤管式冰蓄冷的明顯優勢。在各類大中型中央空調系統、區域供冷、化工工藝、土建等行業和領域都有動態冰蓄冷的廣闊應用前景。當前,我國已經有許多省市實行了針對冰蓄冷空調的分時電價政策,如浙江、江蘇、上海、北京、深圳等,其他地方也都在相繼制定之中。因此,動態冰蓄冷實用技術的突破必將為我國的蓄冷空調行業產生深遠的影響。動態冰技術具有高效、節能、環保等優點,助力工業發展。深圳低碳動態冰方案提供商
動態冰為了防止過冷水在換熱器內結冰,換熱器內表面需要進行特殊涂層處理。珠海冷水式動態冰保溫
因此,刮刀式換熱器的內表面(刮刀葉片接觸面)處理要求非常光滑,而且刮刀葉片與換熱壁面之間的接觸必須緊密。另一方面,由于由純水生成的冰晶顆粒較粗,而且容易聚集硬化,更容易導致堵塞,因此此種制冰方法中往往需要在水中添加一定濃度的冰點抑制劑,如乙二醇、NaCl等。由此又引入了對設備材料的防腐問題。換熱器內表面和整個刮刀組件都是長期浸泡在乙二醇(或NaCl等其他鹽類)水溶液中,并且處于高流速的不利腐蝕條件下,因此金屬材料必須具有特殊的耐腐蝕性能。刮刀葉片一般采用塑料材料,在與金屬換熱避免長期高速摩擦的情況下,必須具有高耐磨的性能。珠海冷水式動態冰保溫