下面是金屬材料進行離子氮化的工藝特點另外兩個,合金鋼主要指用于結構件的含有某些合金元素的鋼類。合金鋼中有專門用于氮化的材料,如38CrMoAl在達到同樣滲層深度的前提下,它更易于氮化。其它合金鋼也都可進行離子氮化,氮化前要進行調質處理,以獲得所要求的基體性能,同時還可以釋放應力。離子氮化后的工件表層有氮化物組織,可以起到防銹作用。其它黑色金屬,對碳鋼(無合金元素)的離子氮化,也能提高硬度,但不及合金鋼提高硬度的幅度,尤其是低碳鋼,原因是因為其基體組織硬度就低,表面硬度不會高。對這類材料氮化的另一用途是防銹蝕。還有模具鋼、鑄鋼、粉末冶金件都可進行離子氮化,達到提高表面硬度等工藝目標。離子氮化和氣體氮化區別。金屬離子氮化哪里好
離子氮化工藝技術應用案例:曲軸的離子氮化工藝流程:毛胚檢驗、寫編號、鉆兩端面中心孔、車大頭外圓及端面、粗車主軸頸及小頭、打編號、粗車主軸頸、大小頭及小頭倒角、銑定位面、精洗連桿頸、車大頭工藝外圓及平衡塊外圓、粗磨連桿頸、鉆橫油孔、鉆斜油孔、斜油孔攻絲及油孔倒角、打磨棱角毛刺、平小頭端面,精車小頭并攻絲、粗車大頭孔、半精磨主軸頸及大頭外圓、精車軸承孔、半精磨連桿頸、精磨連桿頸、鉆法蘭孔并攻絲、精磨小頭、銑鍵槽、動平衡、去重、精磨大頭外圓及端面、油孔口倒角并研磨、清洗、打熱處理批號、離子氮化熱處理、檢查跳動量、手攻絲、油孔口拋光、軸頸拋光、探傷、清洗、檢驗、清洗、涂蝕、包裝?;葜萁饘匐x子氮化種類滲氮是把氮滲入鋼件的表面,形成富氮硬化層的化學熱處理過程。
離子氮化能提升金屬表面硬度,為金屬材料提供出色的耐磨性。以模具鋼為例,經離子氮化處理后,表面硬度可從原本的 HV200 - 300 提升至 HV1000 - 1200 甚至更高。這是由于在離子氮化過程中,氮原子與金屬原子結合形成了硬度極高的氮化物,如 Fe?N、Fe?N 等。這些氮化物彌散分布在金屬表面,形成了一層堅硬的防護層,極大地增強了金屬表面抵抗摩擦和磨損的能力。在機械制造中,齒輪、軸類等零件經離子氮化后,表面硬度的提升使其能夠承受更大的載荷,降低磨損,延長使用壽命,提高機械裝備的可靠性和穩定性。
離子氮化工藝技術應用常見問題:硬度低。主要原因包括系統漏氣造成氧化、選材不當、基體硬度低、氮化溫度、時間或氮勢不足而造成滲層太薄。硬度和涂層不均勻。主要原因包括:裝爐方式不當、氣壓調節不當(如供氣量過大)、溫度不均、小孔窄縫未屏蔽造成局面過熱等均會造成硬度和滲層不均勻。變形超差。減少變形的措施包括:氮化前應進行穩定化處理(處理次數可以是幾次)直至將氮化前的變形量控制在很小的范圍內(一般不應超過氮化后允許變形量的50%);氮化過程中的升、降溫速度應緩慢;保溫階段盡量使工件各處的溫度均勻一致。對變形要求嚴格的工件,如果工藝許可,盡可能采用較低的氮化溫度。離子氮化工藝操作記錄。
離子氮化與氣體氮化在多個方面存在差異。從氮化原理看,氣體氮化是通過氨氣在高溫下分解出氮原子,然后氮原子在工件表面吸附并擴散形成氮化層;而離子氮化是利用輝光放電產生的氮離子轟擊工件表面實現氮化。在氮化速度上,離子氮化明顯更快,如前所述,可縮短大量時間。在氮化質量方面,離子氮化能更精確控制氮化層組織和性能,氣體氮化的氮化層質量均勻性相對較差。從設備成本來看,離子氮化設備由于包含真空系統、電源系統等,初期投資較高;氣體氮化設備相對簡單,成本較低。但從長期運行成本考慮,離子氮化因氮化速度快、能耗低,綜合成本可能更具優勢。在應用范圍上,氣體氮化適用于各種形狀和尺寸的工件,對復雜工件的處理能力較強;離子氮化對于形狀簡單、表面積較大的工件效果更佳,不過隨著技術發展,對復雜工件的處理能力也在不斷提升。鋼采用等離子氮化等表面強化可抑制裂紋的萌生和擴展。梅州真空離子氮化保養
氣體氮化與離子氮化的優缺點。金屬離子氮化哪里好
離子氮化能有效提高金屬的疲勞強度,延長金屬材料的使用壽命。金屬在交變載荷作用下,表面容易產生疲勞裂紋,終導致材料失效。離子氮化形成的氮化層存在殘余壓應力,這一壓應力可抵消部分交變載荷產生的拉應力,從而延緩疲勞裂紋的萌生和擴展。例如,彈簧鋼經離子氮化處理后,疲勞壽命可提高數倍。在機械傳動部件中,如傳動軸,離子氮化處理使其能更好地承受頻繁的啟動、停止和變速等交變載荷,降低疲勞斷裂的風險,為機械裝備的長期穩定運行提供了可靠保障。金屬離子氮化哪里好