重組人血清白蛋白(rHSA)在藥物載體應用中提高藥物穩定性和靶向性的機制主要包括以下幾點:1.**延長半衰期**:通過與rHSA融合,可以延長藥物分子在體內的循環時間。例如,阿必魯肽(Tanzeum)是GLP-1與HSA的融合蛋白,其半衰期可延長至5天,每周給藥一次即可。2.**提高穩定性**:rHSA作為載體,可以保護藥物分子不受體內酶解和其他降解因素的破壞,從而提高藥物的穩定性。例如,FGF21與HSA融合后,其體外穩定性提升,抗胰蛋白酶降解能力和高溫條件下的穩定性增加。3.**改善藥代動力學**:rHSA融合蛋白能夠改善藥物的藥代動力學特性,如改變藥物的分布和代謝,減少腎臟的損失,從而提高藥物在體內的濃度和療效。4.**增強靶向性**:rHSA可以通過其天然的生物學特性,如與特定受體的結合,增強藥物對特定組織或細胞的靶向性。例如,rHSA可以通過其與FcRn受體的結合,實現對瘤組織的靶向性。5.**降低免疫原性**:rHSA作為一種內源性蛋白質,具有較低的免疫原性,可以減少藥物引起的免疫反應,提高藥物的安全性和耐受性。利用牛痘DNA拓撲異構酶I的連接原理,可以在無需DNA連接酶的情況下,快速高效地連接DNA片段,實現克隆。Recombinant Human CD24 (mFc Tag)
檢測重組EGFP(增強型綠色熒光蛋白)的活性和穩定性通常涉及一系列生物化學和分子生物學實驗方法。以下是一些常用的檢測方法:1.**SDS-PAGE電泳**:-通過SDS-PAGE電泳分析EGFP的純度和分子量。-觀察是否有蛋白質降解或聚合的跡象。2.**WesternBlot**:-使用特異性的GFP抗體進行Westernblot,以檢測EGFP蛋白的存在和大小。-可以評估EGFP的表達水平和純度。3.**熒光光譜分析**:-使用熒光光譜儀測量EGFP的激發和發射光譜。-評估熒光強度和比較大激發/發射波長,以確定其熒光特性。4.**流式細胞儀分析**:-如果EGFP融合蛋白表達在細胞中,可以使用流式細胞儀分析細胞群體的熒光強度。-這有助于評估EGFP的表達水平和細胞內分布。5.**熒光顯微鏡觀察**:-在熒光顯微鏡下觀察EGFP的亞細胞定位和表達模式。-通過時間序列成像,可以評估EGFP在活細胞中的動態變化和穩定性。6.**熱穩定性分析**:-通過逐漸升高溫度并測量熒光強度的變化,可以評估EGFP的熱穩定性。-熱穩定性差的EGFP可能會在高溫下迅速失去活性。7.**光穩定性測試(光漂白實驗)**:-通過持續光照并監測熒光強度的下降(光漂白),可以評估EGFP的光穩定性。dUTP,100mM Solution 脫氧尿苷三磷酸溶液(100 mM)將MAGE-A3基因序列克隆到一個表達載體中,該載體通常包含有抗生物質抗性基因、啟動子、核糖體結合位點。
SpCas9蛋白(來自化膿性鏈球菌的Cas9蛋白)在基因編輯中的主要作用是作為核酸酶,能夠精確地切割目標DNA序列。以下是SpCas9在基因編輯中的幾個關鍵步驟和作用:1.**識別和結合**:SpCas9蛋白與一個單導向RNA(sgRNA)結合,形成RNP復合物。這個復合物能夠識別并結合到基因組中與sgRNA互補的特定DNA序列。2.**PAM序列識別**:SpCas9需要一個稱為原間隔子相鄰基序(PAM)的特定序列作為識別目標DNA的先決條件。對于SpCas9,這個PAM序列通常是5'-NGG-3'。3.**DNA切割**:一旦RNP復合物與目標DNA結合,SpCas9就會在PAM序列的3個堿基對的上游位置切割DNA雙鏈,產生一個雙鏈斷裂(DSB)。4.**引發DNA修復**:DNA雙鏈斷裂觸發細胞的DNA修復機制,包括同源定向修復(HDR)和非同源末端連接(NHEJ)。研究人員可以利用這些修復機制來插入、刪除或替換特定的DNA序列。5.**基因修改**:通過HDR,可以在斷裂的DNA兩端引入特定的DNA模板,從而實現精確的基因編輯。而NHEJ通常會導致小的插入或缺失(indel),這可以用來產生基因的敲除或敲入。6.**提高編輯效率**:為了提高SpCas9的編輯效率,研究人員可能會使用優化的sgRNA設計、蛋白質工程或嵌合融合蛋白等策略。
NLS-Cas9-EGFPNuclease在基因編輯中提高特異性的策略包括:1.**核定位信號(NLS)**:NLS有助于Cas9蛋白快速定位到細胞核,這可以減少Cas9在細胞質中的非特異性結合,從而降低脫靶效應。2.**瞬時表達**:由于NLS-Cas9-EGFPNuclease是作為蛋白質直接遞送的,它在細胞內不會經歷長時間的表達,這限制了Cas9的活性時間窗口,減少了長時間存在導致的脫靶風險。3.**優化gRNA設計**:精心設計的gRNA可以提高特異性,通過選擇與目標基因特異性匹配的gRNA,可以減少Cas9在非目標位點的切割。4.**使用高保真Cas9變體**:一些Cas9變體被設計為具有更高的特異性,通過突變Cas9蛋白的某些氨基酸,可以降低其在非目標位點的活性。5.**熒光標記(EGFP)**:EGFP標簽不僅用于追蹤和分選,還可以幫助研究者通過熒光激起細胞分選(FACS)富集成功編輯的細胞,從而提高編輯特異性。6.**體外驗證**:在實際進行體內基因編輯之前,可以通過體外DNA切割實驗驗證gRNA的特異性和效率,篩選出比較好的gRNA。7.**使用PAM序列優化**:通過選擇具有限制性PAM序列的gRNA,可以減少可能的脫靶位點。
11A型肺炎多糖鼠單抗是針對肺炎鏈球菌11A型多糖的單克隆抗體,具有以下特點:1.**特異性**:鼠單抗具有高度的特異性,能夠識別并結合到11A型肺炎鏈球菌的多糖抗原。2.**制備方法**:通過將肺炎多糖與乙肝表面蛋白的偶聯物作為抗原免疫小鼠,然后從小鼠脾細胞與骨髓瘤細胞融合,篩選出能夠表達特異性抗體的雜交瘤細胞株。3.**應用**:11A型肺炎多糖鼠單抗可用于定量檢測33F型肺炎多糖或乙肝表面蛋白,其制備的腹水型單抗對不同批次的樣本回收率為95%~105%。4.**疫苗開發**:在肺炎鏈球菌疫苗的研發中,多糖蛋白結合疫苗是當前的趨勢,通過將多糖與蛋白偶聯,可以提供更高效價的抗體水平和免疫記憶。5.**免疫反應**:11A型肺炎多糖鼠單抗能夠誘導小鼠產生針對肺炎多糖的血清抗體,這有助于研究肺炎鏈球菌的免疫機制。6.**疾病預防**:肺炎鏈球菌是引起肺炎、腦膜炎和敗血癥等嚴重疾病的主要病原體,11A型肺炎多糖鼠單抗的研究有助于開發更有效的疫苗,預防相關疾病。7.**研究進展**:已有研究報道了使用半合成寡糖結合疫苗候選物,能夠激發對肺炎鏈球菌3型的保護性免疫反應。
His-Avi Tag包含了特定肽段,分子量預測為50.20 kDa,但由于糖基化,其在Tris-Bis PAGE結果上遷移至55-60 kDa。Recombinant Human CD24 (mFc Tag)
熒光光譜分析是一種強大的技術,可以用來優化重組EGFP(增強型綠色熒光蛋白)的熒光特性。以下是通過熒光光譜分析來優化EGFP熒光特性的步驟:1.**確定激發和發射波長**:-使用熒光光譜儀測量EGFP的激發和發射光譜,以確定其比較大激發波長和比較大發射波長。-這些波長是EGFP熒光特性的關鍵參數,可以用于后續的成像和檢測實驗。2.**優化激發和發射濾光片**:-根據EGFP的激發和發射光譜,選擇合適的濾光片以比較大化熒光信號并減少背景噪聲。3.**評估熒光量子產率**:-熒光量子產率是衡量熒光效率的一個重要參數,它表示激發態分子產生熒光的概率。-通過比較EGFP與其他標準熒光物質的熒光強度,可以評估其量子產率。4.**熒光緩沖液的優化**:-某些緩沖液成分可能會影響EGFP的熒光特性,如pH值、離子強度和抗氧化劑的存在。-通過改變緩沖液條件,可以優化EGFP的熒光強度和穩定性。5.**溫度和氧濃度的影響**:-溫度和氧濃度會影響EGFP的熒光特性,包括熒光強度和光穩定性。-在熒光光譜分析中,可以通過改變溫度和氧濃度來評估這些因素對EGFP熒光特性的影響。Recombinant Human CD24 (mFc Tag)
Recombinant Human CD34 (His Tag)
Recombinant Mouse LOX1 Protein
Recombinant Cynomolgus IFN alpha/beta R1 Protein
Recombinant Mouse Leptin Protein
Recombinant Human ACE2/ACEH (His Tag)
Recombinant Human IL-17 Protein
Recombinant Cynomolgus NKG2D/CD314 Protein
Recombinant Human CD37 Protein
Recombinant Human TPO Protein
Recombinant Mouse LYPD3 Protein