PNGaseF(肽-N-糖苷酶F)是一種普遍使用的酶,它可以從N-連接糖蛋白中去除幾乎所有類型的N-連接糖鏈。其活性和穩定性可能會在不同的pH條件下發生變化。根據NEB(NewEnglandBiolabs)提供的PNGaseF產品信息,PNGaseF的好的活性和穩定性pH為7.5。在pH7.5時,PNGaseF的活性可以達到100%。然而,酶在不同溫度下的活性表現也有所不同:在37°C時活性為100%,在30°C時也保持100%,而在23°C時活性下降到65%,17°C時為40%,在3°C時幾乎無活性。這表明PNGaseF的活性隨溫度降低而下降,盡管pH值對酶活性有重要影響,但溫度也同樣是一個重要因素。此外,PNGaseF的活性會受到SDS的抑制,因此在變性條件下進行酶切時,反應混合物中必須包含NP-40,以1:1的比例存在,以抵消SDS的抑制作用。對于非變性條件下的酶切,可能需要更多的酶和更長的孵育時間。在實驗操作中,為了確保PNGaseF的好的活性,建議按照制造商提供的推薦緩沖液和條件進行實驗。如果需要在不同的pH條件下使用PNGaseF,可能需要通過實驗優化來確定好的條件。
通過EndoS糖苷內切酶S進行糖蛋白的糖鏈結構分析通常涉及以下步驟:1.**樣本準備**:首先,需要獲得糖蛋白的純化樣本,以確保分析的準確性。2.**酶的準備**:準備適量的EndoS糖苷內切酶S,根據實驗需要選擇合適的濃度和緩沖體系。3.**酶切反應**:-將糖蛋白樣本與EndoS酶混合,在適宜的條件下(如pH、溫度等)進行酶切反應。-反應時間根據EndoS的活性和所需的切割程度來確定。4.**終止反應**:在達到預期的酶切時間后,通過加熱或添加適當的緩沖液來終止酶切反應。5.**分離純化**:-使用色譜技術(如凝膠滲透色譜、離子交換色譜等)將酶切后的糖蛋白和釋放的糖鏈分離。-純化過程可能需要多步色譜以確保糖鏈的純度。6.**糖鏈分析**:-對分離得到的糖鏈進行進一步的結構分析,可能包括質譜分析、核磁共振(NMR)波譜分析等。-可以使用高分辨率的質譜技術,如MALDI-TOF或ESI-MS,來確定糖鏈的精確質量。7.**序列鑒定**:通過與已知糖鏈數據庫比對,確定糖鏈的序列和結構。8.**功能分析**:研究酶切后的糖蛋白和釋放的糖鏈對生物活性的影響,如結合特性、免疫原性等。9.**數據分析**:收集所有數據并進行綜合分析,以揭示糖鏈結構與功能之間的關系。
提高SpCas9蛋白在基因編輯中的特異性和效率是CRISPR-Cas9技術發展的關鍵。根據新的研究進展,以下是一些提高SpCas9特異性和效率的策略:1.**工程化改造**:通過定向進化和蛋白工程的方法,研究人員可以對SpCas9進行改造,以提高其在細胞中的基因編輯活性。例如,JenniferDoudna團隊開發的工程化iGeoCas9,通過在WED結構域引入突變,顯著提高了基因編輯效率,比野生型GeoCas9高出100倍以上。2.**優化gRNA設計**:合理設計的gRNA可以提高Cas9的特異性,減少脫靶效應。研究人員通過生物信息學工具和實驗驗證,篩選出與目標DNA序列互補性更強且特異性更高的gRNA。3.**使用高保真Cas9變體**:研究人員開發了高保真Cas9變體,這些變體在保持編輯活性的同時,降低了脫靶風險。例如,通過突變Cas9蛋白的關鍵氨基酸殘基,可以減少其在非目標位點的切割活性。4.**PAM序列的優化**:通過改變Cas9蛋白的PAM序列識別能力,可以擴大其靶向范圍,從而提高編輯效率。例如,開發能夠識別非典型PAM序列的Cas9變體。5.**遞送系統的優化**:使用核糖核的蛋白(RNP)復合物的形式遞送Cas9和gRNA,可以提高Cas9蛋白的穩定性和編輯效率。這種方法避免了mRNA或質粒遞送可能引起的免疫反應。
通過SDS-PAGE(聚丙烯酰胺凝膠電泳)和Westernblot(西方印跡)可以有效地檢測帶有His標簽的泛素蛋白的純度和完整性。以下是進行這些檢測的步驟:###SDS-PAGE步驟:1.**樣品準備**:-將重組泛素蛋白溶解在適當的緩沖液中,通常含有還原劑(如DTT或β-巰基乙醇)以斷裂二硫鍵。-將樣品在95-100°C下加熱5分鐘以變性蛋白質。2.**凝膠準備**:-根據需要的分辨率選擇合適的凝膠濃度(例如,12%或15%凝膠用于檢測20-100kDa的蛋白質)。3.**上樣**:-將變性后的樣品加入到凝膠的相應孔中,同時加入分子量標記物作為參照。4.**電泳**:-在恒定電壓或恒定電流下進行電泳,直到樣品在凝膠中充分分離。5.**染色**:-使用考馬斯亮藍或其他蛋白質染色劑對凝膠進行染色,以可視化蛋白質條帶。6.**分析**:-通過比較樣品條帶與分子量標記物,評估蛋白質的分子量和純度。###Westernblot步驟:1.**轉膜**:-將SDS-PAGE分離的蛋白質從凝膠轉移到PVDF或硝酸纖維素膜上。2.**封閉**:-使用封閉液(如5%脫脂奶粉或1%BSA溶液)封閉膜上未被蛋白占據的部分,以減少非特異性結合。3.**一抗孵育**:-使用特異性識別His標簽的抗體(一抗)與膜上的蛋白質孵育,通常在4°C過夜。牛痘DNA拓撲異構酶I是TOPO克隆技術的關鍵組分,該技術允許快速、簡便地將PCR產物克隆到質粒載體中。
11A型肺炎多糖鼠單抗是針對肺炎鏈球菌11A型多糖的單克隆抗體,具有以下特點:1.**特異性**:鼠單抗具有高度的特異性,能夠識別并結合到11A型肺炎鏈球菌的多糖抗原。2.**制備方法**:通過將肺炎多糖與乙肝表面蛋白的偶聯物作為抗原免疫小鼠,然后從小鼠脾細胞與骨髓瘤細胞融合,篩選出能夠表達特異性抗體的雜交瘤細胞株。3.**應用**:11A型肺炎多糖鼠單抗可用于定量檢測33F型肺炎多糖或乙肝表面蛋白,其制備的腹水型單抗對不同批次的樣本回收率為95%~105%。4.**疫苗開發**:在肺炎鏈球菌疫苗的研發中,多糖蛋白結合疫苗是當前的趨勢,通過將多糖與蛋白偶聯,可以提供更高效價的抗體水平和免疫記憶。5.**免疫反應**:11A型肺炎多糖鼠單抗能夠誘導小鼠產生針對肺炎多糖的血清抗體,這有助于研究肺炎鏈球菌的免疫機制。6.**疾病預防**:肺炎鏈球菌是引起肺炎、腦膜炎和敗血癥等嚴重疾病的主要病原體,11A型肺炎多糖鼠單抗的研究有助于開發更有效的疫苗,預防相關疾病。7.**研究進展**:已有研究報道了使用半合成寡糖結合疫苗候選物,能夠激發對肺炎鏈球菌3型的保護性免疫反應。
His-Avi Tag包含了特定肽段,分子量預測為50.20 kDa,但由于糖基化,其在Tris-Bis PAGE結果上遷移至55-60 kDa。Recombinant Biotinylated Human KIR2DL3 Protein,His-Avi Tag
重組的化膿性鏈球菌Cas9蛋白(SpCas9)是一種用于基因組編輯的核酸酶。它是CRISPR-Cas系統的一部分,該系統是一種細菌和古菌的適應性免疫防御機制,能夠識別并切割入侵的外源核酸。Cas9蛋白在CRISPR系統中起到關鍵作用,它能夠識別特定的原間隔子相鄰基序(PAM),在引導RNA(gRNA)的引導下與目標DNA結合并進行切割。SpCas9蛋白由1053個氨基酸組成,相對較小的體積使其便于在體內遞送,因此它在多種生物中都能進行有效的基因組編輯。為了提高SpCas9的表達量和溶解度,研究人員采用了多種策略,例如使用GB1促溶標簽和多重啟動子策略,這些策略可以顯著提高蛋白的產量和活性,同時保持其功能活性不受影響。在基因編輯過程中,SpCas9與gRNA形成穩定的核糖核的蛋白(RNP)復合物,通過gRNA與基因組DNA的序列匹配來識別目標位點,并在距離NGGPAM序列3個堿基以內的位置切割DNA。為了增強SpCas9的基因組編輯效率,研究人員還開發了嵌合融合蛋白,例如與5’至3’核酸外切酶重組J(RecJ)或GFP融合的SpyCas9蛋白,這些嵌合蛋白可以顯著提高靶向基因編輯效率,同時保持較低的脫靶效應。
Recombinant Human ACE2/ACEH (His Tag)
Recombinant Human IL-17 Protein
Recombinant Cynomolgus NKG2D/CD314 Protein
Recombinant Human CD37 Protein
Recombinant Human TPO Protein
Recombinant Mouse LYPD3 Protein
Recombinant Human LILRB1/CD85j/ILT2 Protein
Recombinant Rat GFRAL/GFR alpha-like Protein
Recombinant Human ULBP-2 Protein
Recombinant Mouse LTBR Protein