隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了大的應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。使用數據分析和機器學習算法來處理多傳感器數據,建立模型以監測和預測刀具的壽命和健康狀況。紹興仿真監測介紹
傳統維護模式中的故障后維護與定期維護將影響生產效率與產品質量,并大幅提高制造商的成本。隨著物聯網、大數據、云計算、機器學習與傳感器等技術的成熟,預測性維護技術應運而生。以各類如電機、軸承等設備為例,目前已發展到較為成熟的在線持續監測階段,來實現查看設備是否需要維護、怎么安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。以各類如電機、軸承等設備為例,目前已發展到較為成熟在線持續監測階段,來實現查看設備是否需要維護、怎么安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。實現工業互聯網。紹興仿真監測介紹電機狀態監測和故障診斷技術是一種了解和掌握電機在使用過程中的狀態,確定其整體或局部正常或異常的技術。
設備狀態監測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態機械動態特性劣化演變規律。設備由非故障運行狀態劣化為故障運行狀態,其機械動態特性通常有一個發展演變過程(2)提取設備運行狀態發展趨勢特征。在役設備往往具有復雜運行狀態,在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。動力裝備全壽命周期監測診斷方面:實現了支持物聯網的智能信息采集與管理、全生命周期動態自適應監測、早期非線性故障特征提取。優化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發展規律,來提高故障早期辨識能力。基于物聯網和網絡化監測診斷將產品監測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上。應用于風力大電機、空壓機等大型動力裝備的集群化診斷領域。提供了基于物聯網的動力裝備全生命周期監測與服務支持創新模式,提供了其生命周期的遠程監測診斷與維護等專業化服務。
電機狀態監測是了解和掌握電機在使用過程中的狀態,確定其整體或局部正常或異常,以及早期發現故障及其原因,并預報故障發展趨勢的重要技術。這種監測主要包括識別電機狀態和預測發展趨勢兩個方面。電機狀態監測可以通過多種方式進行,包括電流監測、溫度監測、振動監測、聲音監測和光學監測等。電流監測可以判斷電機是否正常運行,如電流過高或過低可能意味著電機受阻或負載過重。溫度監測可以預防設備過熱問題的發生,過熱可能會對設備性能和壽命造成負面影響。振動監測可以及時發現并解決設備的振動問題,如轉子不平衡、軸承損壞等。聲音監測可以及時發現并解決設備的噪音問題,如軸承損壞、不平衡等。光學監測則可以幫助設備操作員及時發現異常情況,例如電機的偏移、卡住或損壞等。除了以上監測方法,還有基于數學模型和人工智能的故障診斷方法。基于數學模型的方法主要是利用電機的數學模型,結合傳感器采集的數據,對電機的狀態進行估計和預測。基于人工智能的方法則主要是利用機器學習、深度學習等人工智能技術,對歷史數據進行分析和學習,實現對電機狀態的監測和故障預警。刀具健康狀態監測應用越來越廣,用來確保切削工具的性能、壽命和安全性。
隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了大的應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。旋轉類設備的狀態監測是確保其正常運行的關鍵步驟。檢測方法,包括振動監測、溫度監測、電流監測等。紹興仿真監測介紹
對電機進行監測,有助于判斷電機是否存在故障以及故障的類型,保障電機的穩定性和可靠性。紹興仿真監測介紹
刀具監測技術主要可以分為兩大類:直接監測方法和間接監測方法。直接監測方法通常是通過使用光學或觸覺傳感器直接觀察刀具的磨損情況。這種方法精度高,但必須進行停機檢測,時間成本較高,因此不適用于工業生產。間接監測方法則是通過監測與刀具磨損或破損密切相關的傳感器信號,如振動、切削力、電流功率和聲發射等,并利用建立的數學模型間接獲得刀具磨損量或刀具破損狀態。這種方法可以在機床加工過程中持續進行,不影響加工進度,因此更適用于在線監測。其中,基于振動的監測法是一種常用的間接監測方法。切削過程中,振動信號包含豐富的與刀具狀態密切相關的信息。通過測量和分析振動信號,可以有效地監測刀具的磨損和破損情況。此外,切削力監測法也是一種常用的間接監測方法。加工過程中,切削力會隨著刀具狀態的變化而改變,因此通過監測切削力的變化也可以有效地判斷刀具的狀態。總的來說,刀具監測技術對于確保加工質量和提高生產效率具有重要意義。在實際應用中,應根據具體的加工需求和條件選擇合適的監測方法和技術。紹興仿真監測介紹