SpeedDP作為一個服務型AI平臺,它能提供從數據標注、模型訓練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視化AI開發功能。平臺所需算法并不是固定的,使用者可以根據自身實際應用場景進行AI算法的定制化開發,例如平臺經過不斷的迭代,目前能夠支持YOLOv8系列算法進行圖像標注。SpeedDP這個平臺使用起來十分簡便,在圖像標注領域其基本使用方法是:1.首先有一個比較好的預選模型2.用這個預選模型做自動標注3.后期人工審核修正大量的圖像標注怎么辦?四川企業圖像標注產品
無人機的迅猛發展,使得無人機的反制技術也水漲船高,常見的有電子干擾、無人機識別對抗等方式。后者采用圖像識別技術,通過在無人機攝像頭的基礎上加裝AI高性能圖像處理板,在算法的作用下,就具備無人機識別的功能,為無人機對抗創造條件。由于無人機飛行速度極快,因此針對于這樣環境下的AI識別需要“與眾不同”的圖像處理板。我們都知道,當視頻幀率越高時,視頻越能夠體現畫面細節信息,而圖像識別算法正是逐幀進行識別,因此,攝像頭捕捉到的畫面細節越多,識別的精度就會越高。山西企業圖像標注功能SpeedDP支持完全的本地化服務器部署。
圖像標注就是給圖像打上標簽標記,例如矩形框等形式,在以前,需要招聘專門的圖像標注師,隨著AI的不斷發展,這個行業正發生翻天覆地的變化。人工智能利用計算機和機器模仿人類思維來解決問題或制定決策。深度學習是人工智能的子領域,深度學習算法模型由神經網絡組成。通過學習樣本數據的特征表達以及數據分布實現能夠像人一樣具備分析和識別目標的能力。通常情況下,AI開發的基本流程是從需求分析、數據制作、模型訓練、測試驗證再到***的模型部署這幾個步驟,而SpeedDP正式采用標準的AI開發流程,從數據標注到模型開發,然后進行模型部署,來逐步實現自動化的圖像標注。
SpeedDP包含如下五個模塊:1.數據集管理:采集并制作用于訓練和測試的數據集;2.項目配置:根據項目的實際情況,對調整相關配置參數進行定制化開發;3.模型訓練:完成訓練參數配置,開始模型訓練并監控訓練過程,損失精度可接受時,暫停訓練;4.模型測試:使用數據集或實際業務場景圖像視頻數據進行模型評估;5.模型部署:模型測試結果達到預期,進行模型轉化和部署。據客戶反饋,使用了慧視光電的SpeedDP后,初步提升效率在80%以上,開發周期縮短,同時可售可租的模式,也讓企業的選擇更加靈活,為所在單位降本增效提供幫助。AI自動標注工具選SpeedDP。
多目標跟蹤是指在連續的圖像中,通過目標檢測算法識別出每一幀中的目標,并在時間上跟蹤它們的位置和狀態。但目標會不斷發生尺度、形變、遮擋等變化,而且還會有目標出現和消失的情況,再加上視頻采集端的相機所處環境可能受到外界影響導致抖動的情況(例如無人機高空檢測),就會給多目標跟蹤造成一定的困難。由于我們不能控制目標,所以只能從視頻采集端維護跟蹤的穩定性。因此,成都慧視針對于多目標檢測跟蹤抖動丟失的優化方法是:1.改進目標檢測,使用更加魯棒的目標檢測算法。2.增強特征描述,利用深度學習提取更高級別的語義特征,這些特征對于小范圍內的視角變化具有更好的不變性3.改進運動模型,在算法中加入對攝像頭運動的估計,通過補償攝像頭運動來減小目標真實運動與預測之間的差距。4.數據關聯策略,設計更靈活的數據關聯算法,允許更大的距離閾值來匹配候選目標。SpeedDP能夠減少機械式的圖像標注工作。西藏信息化圖像標注功能
識別檢測算法的性能提升依靠大量的圖像標注。四川企業圖像標注產品
長時間一直進行這樣的圖像標注工作,那無疑是枯燥而乏味的,手酸不說,更多的是精神上的折磨,進而效率大打折扣。但這又是算法提升的必要途徑,無法跳過,當項目緊急時,甚至需要多人加班加點趕進度。這樣的痛苦現狀急需改變!慧視光電的算法工程師為了提高這一的效率,開發了一個深度學習算法開發平臺SpeedDP。它的基本邏輯是基于一個手動標注一定量的數據集進行訓練,形成一個可用的預選模型(如果已有模型可以直接使用),然后訓練一定階段后,可以評估此模型的能力,如果能夠滿足使用就可以對相同目標的新數據集(未進行任何標注)進行AI自動化標注。這一過程的省去了大量需要對新數據集的手動拉框工作,同時也在不斷反哺此模型算法,幫助提升性能。四川企業圖像標注產品