然后在下一幀采集的圖像中對目標對象進行特征提取;特征匹配的過程既是將提取出來的目標對象的特征與我們事先已經建立的特征模板進行匹配,通過與特征模板的相似程度來確定被跟蹤的目標對象,實現對目標的跟蹤。基于特征的跟蹤算法的優點在于速度快、對運動目標的尺度、形變和亮度等變化不敏感,能滿足特定場合的處理要求。但由于特征具有稀疏性和不規則性,所以該算法對于噪聲、遮擋、圖像模糊等比較敏感,如果目標發生旋轉,則部分特征點會消失,新的特征點會出現,因此需要對匹配模板進行更新。慧視RK3399圖像跟蹤板支持目標跟蹤識別目標(人、車)。浙江目標跟蹤優勢
如今,無人機在我們生活中的應用越來越廣。例如無人機巡檢安防領域,無人機能夠到達人無法觸及的一些角度,能夠很大程度上擴大安防檢查的覆蓋面。在工地、電力、化工等行業,晚上巡檢是必不可少的環節,并且晚上巡檢還能發現白天無法看到的一些問題,在白天,一般的相機效果很好,能夠看到非常清晰的監控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數相機都是可見光相機,在晚上光源不佳時,就會出現成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現出清晰的畫面。陜西目標跟蹤RK3588作為慧視光電開發的全國產化工業級板卡,具備高性能、高精度的優點。
視頻自動跟蹤系統,一般都是用在露天的、較大地域范圍的監控系統中,且邊跟蹤邊錄像。在自動跟蹤系統的發展上,jun用上的視頻自動跟蹤、毫米波雷達跟蹤以及激光雷達跟蹤等是比較成熟的;非jun用領域,存在一些固定畫面、攝像機從不運動的的目標檢測與跟蹤系統;基于帶紅外線的、常用在演播室或者會議室的、很近距離的跟蹤系統,目前主要局限于簡單背景(如室內環境下)、大目標(即目標在視頻圖像中占較大區域),而且一般無法實現控制攝像機轉動來對目標進行跟蹤。
序列圖像的差異通常是運動目標檢測和跟蹤的出發點,認為目標的運動是圖像差異的根本原因。但是,這是建立在背景本身不運動的前提下的。因此,在許多跟蹤系統中,比如車載,由于車的振動導致傳感器位置的變化,表現在圖像上就是背景的運動,因此在做差圖像和背景自動更新之前,都必須先經過配準,即讓所有圖像在都同一個坐標系之下,以消除背景的運動。在不同的應用場合,配準的方法多種多樣,比如當兩個圖像之間只有平移變化時,計算出它們的平移量即可實現配準;由于平移變化對圖像的相位信息影響較大,在頻率域利用相位相關可以實現配準。RV1126圖像處理板是我司自主研發的目標跟蹤板,該板卡采用國產高性能CPU,搭載自研目標跟蹤及跟蹤算法。
基于視頻目標檢測和跟蹤的一般流程是:通過目標檢測,找到目標;對目標特征進行描述,初步估計目標的運動矢量;根據運動狀態,進入目標跟蹤,對傳感器的姿態,比如水平方位、垂直方位和焦距等進行調整;跟蹤到目標后,對目標特征進行更新,并對目標的運動進行預測后,進入下一輪的跟蹤過程。目標跟蹤檢測與跟蹤涉及到的技術細節很多。慧視光電開發的高性能目標跟蹤圖像跟蹤板在自研目標跟蹤算法的作用下,能夠實現高精度低延遲的視頻目標鎖定跟蹤。RK2588搭載AI智能算法,實現目標識別與跟蹤。陜西目標跟蹤
RK3399PRO圖像處理板識別概率超過85%。浙江目標跟蹤優勢