針對冰、水蓄冷系統的蓄冷和放冷過程而開發的主要控制模塊,是實現蓄冷系統及關聯設備穩定、高效、可靠運行的主要基礎。通用性控制系統是高菱針對一般性中間空調系統(包含或不包含蓄冷系統均可)而開發的智能化高效節能控制技術,包括負荷跟蹤、負荷補償、負荷預測、末端管控、冷源側臺數控制等多項先進控制技術。通過應用高菱智能化自動控制系統,中間空調系統,尤其是多冷源的復雜系統,將可能實現明顯的節能效益,并大量減少運維人工的投入。冰蓄冷罐體保溫層采用真空絕熱板,24小時冷損<2%。珠海冰晶式動態冰蓄冷技術
常用空調蓄冷技術根據蓄冷介質,可分為水蓄冷(顯熱式)、冰蓄冷和共晶鹽蓄冷系統三大類。每一大類可分為多個小類。水蓄冷系統就是利用水的顯熱進行蓄冷和釋冷(水的比熱容為4.18kJ/kg?℃)。在蓄冷階段,制冷機制出的冷凍水放入蓄冷槽儲存,在釋冷階段,將冷凍水抽出使用以滿足空調負荷需要。共晶鹽蓄冷也稱之為優態鹽蓄冷是利用固液相變特性蓄冷的另一種形式。共晶鹽是由無機鹽、水、成核劑和穩定劑組成的混合物。目前應用較廣的共晶鹽相變溫度約8~9℃,相變潛熱約95kJ/kg,在蓄冷系統中,這些蓄冷介質大多裝在板狀、球狀或其它形狀的密封件里,再放入蓄冷槽中。中山過冷水動態冰蓄冷造價動態冰蓄冷可以通過冷卻水的回收利用實現社會效益的提升。
制冷系統 COP 高、能耗降低。其制冷蒸發溫度可以繼續保持在-5℃~-8℃之間而且在整個蓄冰過程中保持穩定不下降。相對于冰球、盤管式冰蓄冷中-10℃以下的蒸發溫度(而且隨著蓄冰量的增加逐漸下降)可以顯著提高系統COP。融冰速度快、負荷響應靈敏。由于動態冰蓄冷制出的冰以冰漿形式客觀存在因此在融冰釋冷時冰晶與水之間接觸面積大,融化速度快,可以快速響應空調末端負荷的變動。地面積小、場地適應性強。動態冰蓄冷無需盤管、冰球等預制設備,因此蓄冰槽有效利用率提高,占地空間減小,而且對空間形狀要求降低,場地適應性增強。
技術先進性:從過冷水到冰漿,全部實現管道化循環泵輸送,系統構成簡單,設備(制冷主機、蓄冰槽等)布置靈活,機房空間緊湊。使得對既有水蓄冷系統進行冰蓄冷改造變為現實,解決在不增加占地空間的前提下大幅度增。加蓄冷的系統擴容需求。換熱環節不結冰,結冰環節不換熱,換熱與結冰分離的技術原理使得動態冰蓄冷可以采用高效率的板式換熱器進行制冰,換熱效率大幅度提升。因換熱效率的提升使得制冷主機的乙二醇出水溫度提升至-3℃,制冰工況下的系統能效比提升15%,即夜間蓄冰即可省電15%。動態冰蓄冷可以通過冷卻水的回收利用實現能源效益的提升。
技術內容:技術原理 冰蓄冷中間空調是指在夜間低谷電力時段開啟制冷主機,將建筑物所需的空調冷量部分或全部制備好,并以冰的形式儲存于蓄冰裝置中,在電力高峰時段將冰融化提供空調用冷(見圖1)。由于充分利用了夜間低谷電力,不只使中間空,調的運行費用大幅度降低,而且對電網具有明顯的移峰填谷功能,提高了電網運行的經濟性。動態冰蓄冷技術采用制冷劑直接與水進行熱交換,使水結成絮狀冰晶;同時,生成和溶化過程不需二次熱交換,由此較大程度上提高了空調的能效。冰漿的孔隙遠大于固態冰,且與回水直接進行熱交換,負荷響應性能很好動態系統年減排CO? 1200噸,相當于種植6500棵樹。中山過冷水動態冰蓄冷造價
冰蓄冷與無償冷卻聯用,全年節約運行費用45%。珠海冰晶式動態冰蓄冷技術
冰蓄冷系統,共晶鹽蓄冷也稱之為優態鹽蓄冷是利用固液相變特性蓄冷的另一種形式。共晶鹽是由無機鹽、水、成核劑和穩定劑組成的混合物。目前應用較廣的共晶鹽相變溫度約8~9℃,相變潛熱約95kJ/kg,在蓄冷系統中,這些蓄冷介質大多裝在板狀、球狀或其它形狀的密封件里,再放入蓄冷槽中。靜態制冰技術雖然技術、理論較完備,但是在靜態制冰系統中,由于為冰晶靜態生長,期間結成的冰塊直接在換熱面上不斷生長變厚,使得換熱熱阻不斷加大,隨著蓄冰過程的進行,工作情況只會繼續惡化。與靜態蓄冷方式相比,動態冰蓄冷方式制成的冰漿為有大量懸浮微小冰晶粒子的固液兩相溶液,具有很好的流動性與傳熱性,是一種具有很好發展前景的蓄能技術。珠海冰晶式動態冰蓄冷技術