在常規的空調系統中,6℃/12℃的供/回水溫度所產生的冷量約為25kJ/kg,這主是由于水的顯熱容量較小,而采用冰漿作載冷劑可以減小所需的循環量。冰漿與冷水的供冷量比較。冰漿的供冷量是隨著冰晶的濃度而變化的,如當冰晶的濃度為20%、冰晶的供/回水溫度為0℃/13℃時,其冷量比為4.8,則其提供的冷量為120kJ/kg。冰漿溶液的傳熱系數隨其流量和濃度的變化。從圖中可知:傳熱系數是隨著流量的增加而增加、隨著冰漿濃度的增加而減小。這是由于冰漿濃度的增加減小了溶液的擾動,通過換熱器的流動是層流而不是紊流。盡管在較高冰漿濃度下,其傳熱系數下降,但由于微小的冰晶增加了其傳熱表面積,以及具有較大的傳熱溫差,仍然使其具有較高的傳熱量。冰漿蓄冷技術具有明顯的經濟優勢,降低運營成本。浙江丁烷冰漿蓄冷供應商
烷冰漿采用了簡單高效的理念,采用冷水機組、風泵、水泵等通用高效設備,流程簡單,控制容易,維護方便,氣態丁烷通過風泵加壓進入冷水機蒸發器,通過氣液相變高效換熱冷凝,液態丁烷和水一起進入水泵,再與水直接接觸再蒸發為氣態進行高效熱交換,水放出相變熱變為冰激凌式冰,可以泵送,冰漿流入蓄冰槽,氣態丁烷進入風泵不斷循環;氣囊接通循環系統,使系統既封閉又自動保持常壓(大氣壓力);冷水機蒸發器中丁烷溫度控制在20C左右(風壓約10kpa);蓄冰槽中氣態丁烷蒸發溫度在-0.50C左右(氣壓約0kpa),蓄冰槽中冰水混合溫度在00C。丁烷冰漿技術綜合能效比可達4.0,尤其投資省,可低于常規冷水機組空調投資,而且省電費更多可達40-70%。丁烷冰漿缺點是丁烷易燃易爆,有安全性要求,由于是密閉系統、充填量小(只約30g/kw)、強制通風且系統壓力低(只0-10kpa),丁烷不易泄露,采用安全防范措施,嚴格按安全規程操作,丁烷冰漿明顯比氨制冷系統風險小,也比燃氣熱水器/廚房煤氣風險低。丁烷冰漿冰蓄冷技術現已有1P原理樣機,產品樣機在準備當中。湖北工業冰漿蓄冷艙冰漿在制備過程中,循環水流經冰漿發生器,冰粒逐漸形成。
(盤管和冰球集裝箱式的蓄冰罐和一定尺寸要求的蓄冰盤管,以及有多少盤管和冰球才能相應地蓄多少冷量的致命問題)冰漿蓄冰罐設置靈活、蓄冷增容性好冰漿蓄冷的蓄冰罐只是一個存水的容器,長寬高尺寸可以分散靈活設置;冰漿制取裝置不受時間限制,簡單地增大蓄冰罐體積,就利用周六日雙休日夜間16小時低谷電,在下一周的周一到周三實現全蓄冷,以獲得更多的運行效益。而冰球和盤管則必須增加2倍的冰球和盤管裝置,價格昂貴,不劃算。(盤管和冰球蓄冷量與盤管和冰球的材料成本的一對一的正比關系)。
冰漿蓄冷有成本優勢,冰漿蓄冷系統的主要是以 1 小時制冷量的板式換熱器的冰漿制取裝置取代需要 8 小時盤管蓄冰的盤管。(盤管和冰球幾百上千噸的乙二醇以及冰層熱阻導致的蓄冷冷不足、放冷速率受限等導致的不節能、不環保)冰漿蓄冷環保節能冰漿蓄冷系統乙二醇用量極少,而盤管的乙二醇用量多達幾十噸。冰漿蓄冷是目前為止,利用水作為相變材料效率較高的方式(乙二醇溶液-3°℃)。每削減電力高峰 1KW.h,減少電廠碳排放 0.11KG。如全年削減電力高峰電量 150 萬 KW.h(5 萬㎡空調建筑面積,電價高峰耗電比常規空調系統減少 85%),不只獲得 130萬的運行收益,還減少碳排放165噸。冰漿蓄冷系統具有良好的調節性能,適應不同場合的制冷需求。
基礎知識提問與回答:過冷水冰漿制冰的原理是什么?答:一般我們會認為水的凝固點為 0℃,也就是水在 0℃以下會凍結,但實際上,水在 0℃以下仍會以過冷水的型態存在,這是因為由液態水轉變成冰的過程存在有一個能量狀態,水需要克服這個能量障礙才能結冰。結冰過程需要兩個關鍵因素:凝結核和低溫。普通的自來水較低可以形成-5℃~-6℃的過冷水,所以只要控制好溫度、材料、結構、流速、壓力等參數,就可以確保穩定地產生-2℃的過冷水,過冷水進入冰漿發生器中,冰漿發生器提供凝結核,過冷水即成為冰漿(冰水混合物),儲存在蓄冰罐中。某大型超市采用冰漿蓄冷技術,降低其制冷成本約30%。河北流態冰漿蓄冷設備
冰漿蓄冷原理巧妙地利用了冰的熱力學特性,實現高效節能制冷。浙江丁烷冰漿蓄冷供應商
技術先進性:從過冷水到冰漿,全部實現管道化循環泵輸送,系統構成簡單,設備(制冷主機、蓄冰槽等)布置靈活,機房空間緊湊。,使得對既有水蓄冷系統進行冰蓄冷改造變為現實,解決在不增加占地空間的前提下大幅度增加蓄冷的系統擴容需求。換熱環節不結冰,結冰環節不換熱,換熱與結冰分離的技術原理使得動態冰蓄冷可以采用高效率的板式換熱器進行制冰,換熱效率大幅度提升。因換熱效率的提升使得制冷主機的乙二醇出水溫度提升至-3℃,制冰工況下的系統能效比提升15%,即夜間蓄冰即可省電15%。浙江丁烷冰漿蓄冷供應商