針對冰、水蓄冷系統的蓄冷和放冷過程而開發的主要控制模塊,是實現蓄冷系統及關聯設備穩定、高效、可靠運行的主要基礎。通用性控制系統是高菱針對一般性中間空調系統(包含或不包含蓄冷系統均可)而開發的智能化高效節能控制技術,包括負荷跟蹤、負荷補償、負荷預測、末端管控、冷源側臺數控制等多項先進控制技術。通過應用高菱智能化自動控制系統,中間空調系統,尤其是多冷源的復雜系統,將可能實現明顯的節能效益,并大量減少運維人工的投入。動態冰蓄冷可以在能源供應不足或價格高漲時提供備用冷量。流態化動態冰蓄冷
儲能技術是解決用電峰谷電負荷差距大、能源短缺的有效方式。需要注意的是,這里所說的儲能,并不光包括熱能的存儲,還包括蓄冷。通過夜間蓄冷,可在電價較為低廉的夜間儲存能量,用于轉移用電高峰時的空調負荷,具有很高的經濟性,可以起到很好的平衡用電負荷,發揮"移峰填谷"的作用,是一種可以獲得長遠效益的節能形式,這種方式的實現就需要一種成熟的冰蓄冷技術。按照制冰方式的不同,蓄冰系統可分為靜態制冰和動態制冰兩種方式。佛山機房動態冰蓄冷方案提供商動態冰蓄冷可以通過冷卻水的回收利用實現環境效益的提升。
迄今為止,只中國科學院廣州能源研究所對此技術進行了系統深入的研究。從2003年起,中國科學院廣州能源研究所開始了對流態化動態冰蓄冷技術的全方面研究。成功突破熱交換器堵塞、超聲波促晶、以及動態解冰等關鍵技術,建立了流態化動態制冰示范系統,研制成功我國擁有自主知識產權的動態冰蓄冷技術,使我國的第二代流態化動態蓄冷技術基本達到國際先進水平,打破了國際技術壁壘。如今,動態冰蓄冷已成為國際上冰蓄冷技術的主要發展方向,而且在發達國家普及迅速。
制冷系統 COP 高、能耗降低。其制冷蒸發溫度可以繼續保持在-5℃~-8℃之間而且在整個蓄冰過程中保持穩定不下降。相對于冰球、盤管式冰蓄冷中-10℃以下的蒸發溫度(而且隨著蓄冰量的增加逐漸下降)可以顯著提高系統COP。融冰速度快、負荷響應靈敏。由于動態冰蓄冷制出的冰以冰漿形式客觀存在因此在融冰釋冷時冰晶與水之間接觸面積大,融化速度快,可以快速響應空調末端負荷的變動。地面積小、場地適應性強。動態冰蓄冷無需盤管、冰球等預制設備,因此蓄冰槽有效利用率提高,占地空間減小,而且對空間形狀要求降低,場地適應性增強。動態冰蓄冷可以實時監測冷量需求,提供精確的冷卻效果。
從系統穩定性和可靠性上來看,該系統對控制精度要求比較高,控制比較復雜,系統的穩定性和可靠性大多取決與系統的自控,否則會產生冰堵、機組振、能耗高等一系列問題。從與Z]能源公司溝通與交流來看,其公司設備是專業技術技術,克服了冰晶式動態蓄冰系統上傳統的技術問題,以上風險在其項目室例中未見相關隱患。但所提供的項目案例時間均不超過5年,還有待市場時間上的進一步檢驗。綜上,該蓄冰系統節能性較好,能夠降低投資,節約運行費用,如果能夠解決報告中的技術風險,可考慮在本項目中采用。蓄冷過程中,冰塊被儲存在蓄冷槽中,以備高峰時段使用。流態化動態冰蓄冷
動態冰蓄冷可以通過冷熱電三聯供系統實現能源的高效利用。流態化動態冰蓄冷
冰球式蓄冰系統,原理:利用內充有可相變介質的小圓球(為增大熱交換面積,一些廠家在球體上會再設有若干個小的凹陷,后統稱冰球)來蓄冷,并將冰球儲存于專門的罐體中,通過循環于主機與罐體間的低溫載冷劑,將冰球內的介質完成相變,從而儲存冷量;釋冷時,通過循環于換熱器(二次側為空調末端)和體間的載冷劑,將冷量釋放到空調末端,從而形成一個完整的蓄冷、釋冷的過程屬于中國較早引進的系統,因各種缺陷,如冰球破損多,新建項目己應用較少。流態化動態冰蓄冷