磷化處理時通過在金屬表面形成一層磷化物膜來防止金屬與外界環境中的氧氣、水和其它化學物質接觸,從而提高金屬的耐腐蝕性能。然而磷化處理過程可能會產生一些有害物質,例如廢水和廢氣中的重金屬離子和硝酸鹽,這對環境造成一定的污染。工研所QPQ技術是一種熱處理表面改性技術,在工藝上是熱處理技術和防腐技術的復合,在滲層組織上是氮化物層和氧化物層的復合,在滲層性能上是耐磨性和防腐性的復合。經過硫酸銅溶液腐蝕、露天放置以及鹽霧試驗進行耐蝕性能的比較,發現經過工研所QPQ處理的工件耐蝕性更優,同時工研所QPQ技術在生產過程中產生的廢氣、廢水、廢渣經處理后均滿足國家標準。QPQ表面處理可以提高刀具的抗沖擊性能。微變形QPQ鹽霧
QPQ是英文“Quench-Polish-Quench”的首字母縮寫,釋義為“淬火-拋光-淬火”。拋光是產品進行精細化處理的一種手段,還有噴丸(拋丸)、噴砂、研磨。可根據產品的技術要求(如外光要求、粗糙度要求、鹽霧時間要求)選擇合適的精細化處理方式。拋光是指利用機械、化學或者電化學的方式使工件表面粗糙度降低,以獲得光亮平整的表面,QPQ常見的拋光方式有振動拋光、桿式拋光、布倫拋光以及羊毛刷手動拋光等;噴丸主要通過去除工件表面的疏松層與氧化膜來提供工件的機械性能和防腐性能,經過工研所QPQ處理的42CrMo工件進行拋丸處理,發現工件表面氧化膜去除,化合物層完好,耐蝕性提高;噴砂的破壞力強于噴丸,在使用過程中通常使用80目以上的玻璃砂,噴砂工藝不僅應用于后處理上,對于某些不銹鋼產品,為確保產品外觀,在QPQ處理前也需要進行噴砂處理以消除表面殘余應力;研磨是通過研具與工件在一定壓力下的相對運動對工件表面進行精整加工,主要應用于表面粗糙度較高、精密零件采用的工藝,加工精度可達IT5~01,表面粗糙度可達Ra0.63~0.01μm,研磨方法一般可分為濕研、干研和半干研,目前使用較多的一般是銅棒研磨。湖北QPQQPQ表面處理可以減少刀具的摩擦系數,提高切削效率。
在汽車發動機中,活塞桿是連接活塞和曲軸的關鍵部位,它承受著活塞往復運動時的巨大力量,并將這些力量轉化為旋轉動力,驅動汽車前進,因此,它要求有較高的耐磨性和良好的耐蝕性。原來一般采用鍍硬鉻來增加表面的耐蝕性和耐磨性,但是鍍鉻的六價鉻離子嚴重污染環境,因此采用環保的工研所QPQ工藝方法,其耐磨性比鍍硬鉻高2倍,耐蝕性比鍍硬鉻高20倍,同時通過鹽霧試驗發現工研所QPQ處理后的活塞桿具有良好的耐蝕性,因此可以用工研所QPQ技術代替鍍硬鉻。
工研所的QPQ表面復合處理技術與傳統的熱處理方法相比,工研所的QPQ表面復合處理技術在處理過程中的零件不會發生形變,能夠保持零件原有的形狀和尺寸;QPQ技術生產效率高,可快速完成對零件的表面處理,這對于生產周期短、持續高效的產線來說非常重要;QPQ技術處理后的零件具有優良的穩定性,能夠長時間保持良好的性能,這使得QPQ處理后的零件在各種工況下都能夠持續穩定地工作,提高了零件的使用壽命;QPQ技術適用于各種類型的金屬零件,能夠滿足不同領域的零件處理需求,這使得QPQ技術在各個領域都有著廣泛的應用前景;同時,處理后的零件表面光滑度高,不需要額外的拋光工藝,節省了生產成本,提高了生產效率;QPQ表面處理可以提高刀具的切削精度,提高產品質量。
通常,我們采用中性鹽霧試驗來評估零件的防腐蝕性能,這一測試方法能夠模擬零件在潮濕、含鹽環境中的耐腐蝕表現。在標準鹽霧實驗環境中,氯化鈉作為主要的鹽類成分,扮演著至關重要的角色。氯化鈉是一種強電解質,具有極強的吸濕性,一旦與水接觸,便會迅速且完全地電離為氯離子和鈉離子。鹽霧對金屬材料表面的腐蝕過程,實質上是氯離子發揮其強烈的穿透能力所致。由于氯離子的半徑相對較小,它能夠輕易地穿透金屬表面的氧化層或保護層,進而與內部的金屬基體發生電化學反應。這一反應會逐步侵蝕金屬,導致金屬材料表面的破壞。中性鹽霧試驗正是通過模擬這種環境,來檢測零件在長時間暴露于鹽霧中的耐腐蝕性能,從而確保零件在實際使用中的耐久性和可靠性。成都工具研究所有限公司是一家專注于刀具研發和表面處理的公司。活塞環QPQ鹽霧
QPQ表面處理可以有效地延長刀具的使用壽命。微變形QPQ鹽霧
工研所低溫QPQ處理技術在航空航天、新能源等高精尖領域應用廣,該技術在可以提升硬度的同時幾乎不破壞其耐腐蝕性以及極小的變形,對于密封圈、墊圈等變形尺寸要求高的零件,該工藝是較好的選擇。常規QPQ氮化工藝處理溫度通常在500℃以上,這樣會造成一些回火或調質溫度低的碳鋼或合金鋼的心部硬度降低,從而影響其零件的整體性能,如抗拉強度等。奧氏體不銹鋼由于含碳量很低,無法通過相變進行強化,常規的QPQ技術雖然可以大幅度提高其耐磨性能,但由于溫度過高,導致CrN的大量析出,嚴重損害了不銹鋼的耐蝕性能。當采用較低的溫度來處理時,可以在奧氏體不銹鋼表面生成“S”相,在不降低耐蝕性能的同時大幅度提高其耐磨性能。有些高速鋼、模具鋼等零件采用現有QPQ處理后會出現化合物層崩缺的現象,因此不敢長時間進行氮化處理,但當處理溫度降低以后,隨著氮原子的活性降低,化合物形成需要的時間更長,可以進行更長的氮化處理以提高擴散層的深度。微變形QPQ鹽霧