汽車曲軸、凸輪軸、氣門、摩托車齒輪、連桿、球頭銷等,它承受復雜的彎曲、扭轉載荷和一定的沖擊載荷,軸頸表面要承受磨損,凸輪部分承受變化的擠壓應力以及在挺桿的摩擦等,因此要求材料表面具有良好的耐磨性與耐蝕性能。原來一般采用鍍硬鉻來增加表面的耐磨性與耐蝕性,但鍍鉻的六價鉻離子嚴重污染環境,因此必須采用環保的工藝方法代替。工研所QPQ技術是一種環保的工藝方法,其耐磨性比鍍硬鉻高2倍,耐蝕性比鍍硬鉻高20倍,因此用工研所QPQ技術代替鍍硬鉻,耐磨性和耐蝕性都會大幅度提高。QPQ表面處理可以使刀具具有更高的切削效率。農機QPQ生產周期
產品經工研所QPQ處理后,在表面會形成一層氮化層,為保證產品質量合格,會對同材質同狀態的樣塊或產品進行滲層深度、致密度以及滲氮層氮化物級別判定的金相檢測,通常有金相法和顯微硬度法來確定擴散層的深度,金相法相較于硬度法簡單便捷,對于鑄鐵件、碳鋼件、合金鋼鐵件等材料使用硒酸腐蝕,對于不銹鋼,模具鋼等材料使用硝酸酒精腐蝕劑腐蝕。在顯微鏡下觀察,從表面計算到針狀氮化物終了處或與心部有明顯差別處作為總滲層深度,除去化合物深度即為擴散層深度。鹽浴液體氮化QPQ粗糙QPQ表面處理可以提高刀具的抗疲勞性能。
電鍍技術就是利用電解原理在某些金屬表面上鍍上一層其它金屬或合金的過程,通過金屬膜來防止金屬氧化,提高耐蝕性與耐磨性。隨著環保政策的管控,電鍍工藝存在的重金屬污染在較多地區受到一定的限制。工研所QPQ熱處理表面改性技術主要應用在黑色金屬的防腐抗蝕、硬度提升、耐磨性提升等性能需求。通過在高溫(400-650℃)下對工件進行氮化和氧化處理,使金屬表面形成一層硬度較高的氮化物層,這種氮化物層具有極高的硬度和耐磨性,能夠有效提高金屬制品的表面硬度、耐磨性和耐蝕性。
工研所于上世紀80年代打破國際壟斷,成功自主研發QPQ技術。其中的技術關鍵是自主開發了成分獨特的氮化鹽浴的配方,其中添加了一種特殊的氧化劑,使鹽浴中的有害氰酸根含量保持在質量分數為0.2%以下,為德國的的10%,達到了國際先進水平。同時鹽浴中的有效成分氰酸根含量長期保持穩定。同時還開發了能夠徹底分解氰酸根的氧化鹽浴配方,因此完成了環保的QPQ技術開發的全過程。同時,工研所能為客戶提供詳細技術資料,成套工藝方案,設備圖紙,成套專業設備(根據客戶實際需求設計咨詢),長期供應生產用鹽,技術咨詢,現場咨詢服務,幫助客戶達到穩定投產,并實行終身技術服務。QPQ表面處理可以提高刀具的抗磨損性能。
QPQ表面復合處理技術是一種針對金屬表面的處理工藝,能夠有效提高材料表面硬度、耐磨性和抗疲勞性能,并且因工藝、設備簡單易行而被廣泛應用。利用QPQ鹽中的有效組分在合金鋼表面發生分解、吸附、擴散,從而改變合金鋼表面化學成分及相組成以提高合金鋼表面性能。然而,高溫長時間的工藝條件易造成工件變形,組織粗化以及對不銹鋼耐蝕性的降低。因此,工研所研發出了可在低溫進行表面處理的新一代QPQ表面處理技術,化合物滲層由原有的15~20μm增加到30~40μm以上。經過QPQ表面處理的刀具具有更好的熱穩定性。鹽浴液體氮化QPQ替代電鍍
QPQ表面處理可以有效地延長刀具的使用壽命。農機QPQ生產周期
工研所的QPQ處理技術,是一種創新的金屬鹽浴表面強化改性技術。它通過將金屬置于兩種具有不同性質的低溫熔融鹽浴中進行復合處理,促使多種有益元素同時滲入金屬表面,形成獨特的復合滲層。這一滲層由致密的氧化膜、牢固的化合物層以及深入的擴散層共同構成,實現了對金屬表面的整體強化改性。尤為值得一提的是,QPQ技術的全工藝過程綠色環保,無任何有害物質排放,完全符合現代工業的綠色生產要求。與傳統的單一熱處理技術和表面防護技術相比,QPQ技術能夠同時、大幅度地提升金屬表面的耐磨性和耐蝕性,從而明顯延長金屬制品的使用壽命,提高其綜合性能。這一獨特的技術優勢,使得QPQ技術在金屬表面處理領域展現出了廣闊的應用前景。農機QPQ生產周期