通過EndoS糖苷內切酶S進行糖蛋白的糖鏈結構分析通常涉及以下步驟:1.**樣本準備**:首先,需要獲得糖蛋白的純化樣本,以確保分析的準確性。2.**酶的準備**:準備適量的EndoS糖苷內切酶S,根據實驗需要選擇合適的濃度和緩沖體系。3.**酶切反應**:-將糖蛋白樣本與EndoS酶混合,在適宜的條件下(如pH、溫度等)進行酶切反應。-反應時間根據EndoS的活性和所需的切割程度來確定。4.**終止反應**:在達到預期的酶切時間后,通過加熱或添加適當的緩沖液來終止酶切反應。5.**分離純化**:-使用色譜技術(如凝膠滲透色譜、離子交換色譜等)將酶切后的糖蛋白和釋放的糖鏈分離。-純化過程可能需要多步色譜以確保糖鏈的純度。6.**糖鏈分析**:-對分離得到的糖鏈進行進一步的結構分析,可能包括質譜分析、核磁共振(NMR)波譜分析等。-可以使用高分辨率的質譜技術,如MALDI-TOF或ESI-MS,來確定糖鏈的精確質量。7.**序列鑒定**:通過與已知糖鏈數據庫比對,確定糖鏈的序列和結構。8.**功能分析**:研究酶切后的糖蛋白和釋放的糖鏈對生物活性的影響,如結合特性、免疫原性等。9.**數據分析**:收集所有數據并進行綜合分析,以揭示糖鏈結構與功能之間的關系。
通過SDS-PAGE(聚丙烯酰胺凝膠電泳)和Westernblot(西方印跡)可以有效地檢測帶有His標簽的泛素蛋白的純度和完整性。以下是進行這些檢測的步驟:###SDS-PAGE步驟:1.**樣品準備**:-將重組泛素蛋白溶解在適當的緩沖液中,通常含有還原劑(如DTT或β-巰基乙醇)以斷裂二硫鍵。-將樣品在95-100°C下加熱5分鐘以變性蛋白質。2.**凝膠準備**:-根據需要的分辨率選擇合適的凝膠濃度(例如,12%或15%凝膠用于檢測20-100kDa的蛋白質)。3.**上樣**:-將變性后的樣品加入到凝膠的相應孔中,同時加入分子量標記物作為參照。4.**電泳**:-在恒定電壓或恒定電流下進行電泳,直到樣品在凝膠中充分分離。5.**染色**:-使用考馬斯亮藍或其他蛋白質染色劑對凝膠進行染色,以可視化蛋白質條帶。6.**分析**:-通過比較樣品條帶與分子量標記物,評估蛋白質的分子量和純度。###Westernblot步驟:1.**轉膜**:-將SDS-PAGE分離的蛋白質從凝膠轉移到PVDF或硝酸纖維素膜上。2.**封閉**:-使用封閉液(如5%脫脂奶粉或1%BSA溶液)封閉膜上未被蛋白占據的部分,以減少非特異性結合。3.**一抗孵育**:-使用特異性識別His標簽的抗體(一抗)與膜上的蛋白質孵育,通常在4°C過夜。Recombinant Human XCR1 Protein-VLPUBE2L3在調節NF-κB信號通路中的作用可能對免疫反應和炎癥過程至關重要。
SpCas9蛋白(來自化膿性鏈球菌的Cas9蛋白)在基因編輯中的主要作用是作為核酸酶,能夠精確地切割目標DNA序列。以下是SpCas9在基因編輯中的幾個關鍵步驟和作用:1.**識別和結合**:SpCas9蛋白與一個單導向RNA(sgRNA)結合,形成RNP復合物。這個復合物能夠識別并結合到基因組中與sgRNA互補的特定DNA序列。2.**PAM序列識別**:SpCas9需要一個稱為原間隔子相鄰基序(PAM)的特定序列作為識別目標DNA的先決條件。對于SpCas9,這個PAM序列通常是5'-NGG-3'。3.**DNA切割**:一旦RNP復合物與目標DNA結合,SpCas9就會在PAM序列的3個堿基對的上游位置切割DNA雙鏈,產生一個雙鏈斷裂(DSB)。4.**引發DNA修復**:DNA雙鏈斷裂觸發細胞的DNA修復機制,包括同源定向修復(HDR)和非同源末端連接(NHEJ)。研究人員可以利用這些修復機制來插入、刪除或替換特定的DNA序列。5.**基因修改**:通過HDR,可以在斷裂的DNA兩端引入特定的DNA模板,從而實現精確的基因編輯。而NHEJ通常會導致小的插入或缺失(indel),這可以用來產生基因的敲除或敲入。6.**提高編輯效率**:為了提高SpCas9的編輯效率,研究人員可能會使用優化的sgRNA設計、蛋白質工程或嵌合融合蛋白等策略。
大腸桿菌表達的重組抑肽酶(Aprotinin)是一種通過基因工程技術在大腸桿菌中生產的蛋白酶抑制劑,具有以下特性和應用:1.**來源**:重組抑肽酶是通過大腸桿菌(E.coli)表達系統生產的,確保了無動物源性成分,減少了病毒污染的風險。2.**結構**:它是一種單體球狀蛋白,由58個氨基酸組成,具有三個交聯二硫鍵的單個多肽鏈。3.**功能**:作為一種競爭性、可逆的絲氨酸蛋白酶抑制劑,重組抑肽酶能夠抑制胰蛋白酶、糜蛋白酶、激肽釋放酶和血纖維蛋白溶酶等的活性。4.**應用**:在生物技術過程中,重組抑肽酶可以替代動物源性抑肽酶,用于重組蛋白生產中抑制絲氨酸蛋白酶的活性,以及在細胞培養等過程中。5.**產品信息**:通常以粉末形式提供,具有明確的貨號和規格,如1mg或10mg的包裝。6.**產品性質**:包括外觀、溶解度、純度、蛋白含量、酶濃度和活性定義等詳細參數。7.**儲存條件**:凍干粉在2~8℃保存,有效期為2年。8.**使用方法**:推薦的結合pH>6.0,在pH<3.0的條件下不結合,可直接使用0.9%NaCl溶解,溶解后可-20℃儲存。9.**注意事項**:產品作科研用途,操作時需穿著實驗服并佩戴一次性手套。將MAGE-A3基因序列克隆到一個表達載體中,該載體通常包含有抗生物質抗性基因、啟動子、核糖體結合位點。
EndoS酶在抗體藥物偶聯物(ADCs)研究中的具體應用主要體現在糖鏈定點偶聯技術方面。根據上海藥物研究所的研究進展,EndoS酶被用于實現定點ADC化合物的“一步”制備,這是一種新穎的糖鏈定點ADC制備策略。該策略利用了新穎截短型糖結構的藥物-連接子和野生型糖苷內切酶EndoS2,將小分子細胞毒藥物直接定點連接到抗體糖基化位點,從而克服了傳統糖鏈定點ADC制備策略的限制。具體來說,研究人員通過篩選發現,EndoS2酶可以將二糖底物LacNAc轉移至去糖抗體N297位糖基化位點,并且LacNAc半乳糖6號位唾液酸化修飾不影響EndoS2的轉糖基化活性。這一發現使得EndoS2和LacNAc的組合可以直接實現野生型抗體的糖基化改造,且EndoS2對多樣化LacNAc修飾的兼容性,可以高效獲得多樣性功能修飾的巖藻糖化或去巖藻糖化的糖工程抗體。此外,研究人員還利用疊氮化修飾的LacNAc底物實現了抗體糖基化位點的“一步”疊氮化修飾,并通過點擊化學反應偶聯藥物-連接子,實現了“兩步”制備得到定點ADC化合物。
Recombinant Biotinylated Human MAGE-A3 (HLA-A*24:02) Protein, His-Avi Tag 是一種通過重組DNA技術。Recombinant Cynomolgus PD-L1/B7-H1 Protein,hFc Tag
在進行IdeSProtease的分子改造時,平衡酶的活性和穩定性是一個關鍵的挑戰。以下是一些策略,這些策略可以幫助研究者在提高酶穩定性的同時保持或甚至提高其催化活性:1.**定向進化**:使用定向進化技術進行多輪的突變和篩選,以獲得在所需條件下具有改進穩定性的酶變體,同時監測其催化活性,確保改造后的酶保持高效催化能力。2.**結構基礎的理性設計**:基于IdeSProtease的三維結構信息,識別可能影響穩定性和活性的關鍵氨基酸殘基,通過點突變或小肽插入來優化這些區域。3.**計算模擬**:利用分子動力學模擬和計算化學方法預測突變對酶穩定性和活性的影響,以指導理性設計。4.**糖基化修飾**:通過糖基化可以增加酶的溶解性和穩定性,但需注意不要干擾酶的活性位點或底物結合位點。5.**活性位點附近的柔性區域改造**:通過剛化柔性區域的策略提高酶的熱穩定性,同時保持活性位點的柔性以維持催化活性。6.**長距離相互作用分析**:研究蛋白質內部的長距離相互作用,識別影響穩定性和活性的遠程突變,通過這些突變優化酶的性能。7.**酶活性和穩定性的權衡分析**:通過實驗數據,分析酶活性和穩定性之間的關系,找到比較好平衡點。Recombinant Cynomolgus PD-L1/B7-H1 Protein,hFc Tag
Recombinant Human Complement factor I Protein
Recombinant Human MFAP4 Protein
N-Boc-Phe-Leu-Phe-Leu-Phe
Recombinant Human CTGF/CCN2 Protein
Rat Eotaxin/CCL11
PAR-1 agonist peptide
Recombinant Mouse MXRA8 Protein
Recombinant Human PKC iota Protein
Recombinant Mouse CD21 Protein
Recombinant Mouse G-CSF