多目標跟蹤是指在連續的圖像中,通過目標檢測算法識別出每一幀中的目標,并在時間上跟蹤它們的位置和狀態。但目標會不斷發生尺度、形變、遮擋等變化,而且還會有目標出現和消失的情況,再加上視頻采集端的相機所處環境可能受到外界影響導致抖動的情況(例如無人機高空檢測),就會給多目標跟蹤造成一定的困難。由于我們不能控制目標,所以只能從視頻采集端維護跟蹤的穩定性。因此,成都慧視針對于多目標檢測跟蹤抖動丟失的優化方法是:1.改進目標檢測,使用更加魯棒的目標檢測算法。2.增強特征描述,利用深度學習提取更高級別的語義特征,這些特征對于小范圍內的視角變化具有更好的不變性3.改進運動模型,在算法中加入對攝像頭運動的估計,通過補償攝像頭運動來減小目標真實運動與預測之間的差距。4.數據關聯策略,設計更靈活的數據關聯算法,允許更大的距離閾值來匹配候選目標。圖像標注是一項繁瑣的工作。智慧小區AI智能方案**
夏季,為了消減酷暑的炎熱,下水消暑成了老老少少的選擇,這也就給溺水事故埋下了隱患。以前,人工巡視雖然能夠起到一定作用,但是仍不能避免時間差帶來的弊端,每當發現后可能就為時已晚。而利用無人機,則可以開展不間斷、高密度、大范圍的巡視工作,其靈活機動的特點在巡湖巡河中十分高效。無人機搭載吊艙后升空,能夠看得更遠、更清晰,并且能夠輕松飛到一些盲區進行巡視。如果只是搭載吊艙仍屬于手動巡視的一種。如果要實現更加智能化的巡視,則可以在無人機光電吊艙的基礎上定制植入具備智能識別檢測的AI圖像跟蹤板,板卡在定制的對“人”的識別算法的賦能下,就能夠對河道內、靠近河道的人進行自動識別跟蹤,一旦發現有人靠近水域出現涉水等行為,無人機就可以主動靠近,并通過人工喊話、大喇叭等形式對相關人員進行勸導。智慧小區AI智能方案**提高算法識別精度的方案有哪些?
無人機在高速公路巡檢中的作用越來越突出,特別是在十一黃金周這樣的出行高峰,高速公路的安全和暢通至關重要。傳統的巡檢模式受到人力物力以及時空的限制,弊端很大,難以實現精細大面積的監控疏導。無人機靈活機動的特點則能夠很好的彌補時空的局限,而想要進一步減少人力物力的付出,則需要打造智能化的無人機,通過AI賦能,讓無人機更加聰明。打造智能化無人機可以在無人機吊艙的基礎上加裝高性能的AI圖像處理設備,成都慧視開發的Viztra-HE030圖像處理板憑借6.0TOPS的算力,用在十一黃金周這樣的出行高峰期就能夠很好地勝任工作,板卡采用了國產化芯片RK3588,在算法的賦能下,能夠實現高效巡檢。
AI的不斷應用發展使得傳統的人工工作的弊端得到了很好的彌補。比如在圖像標注這個領域,傳統的標注需要招聘大量的人員,并且標注圖像所耗費的時間精力也是不可估量的,而AI模型的出現讓這一切都成為過去。利用慧視光電打造的深度學習算法開發平臺SpeedDP,就能夠針對場景識別進行特有的模型部署訓練,通過大量的訓練,讓AI學會自動標注圖像。平臺采用標準的AI算法開發流程,通過從需求分析、數據制作到模型訓練、測試驗證以及模型部署幾個主要模塊。SpeedDP用于模型訓練和評估測試的數據集是由一系列的圖像和標注文件組成的,平臺支持多種開源數據格式如VOC和COCO。而目前平臺共支持yolox系列和yolov8系列模型用于模型訓練(分割任務*支持yolov8模型),通過不斷額測試驗證,就能夠讓AI實現海思、RockChip嵌入式硬件平臺等模型部署的可視化AI開發功能。圖像算法工程師再也不用經常熬夜進行圖像標注工作了。
物聯網技術自20世紀末提出以來,已經從簡單的設備連接發展到復雜的智能系統。通過傳感器、執行器和網絡通信技術,物聯網能夠實現對物理世界的實時監控和控制。目前,物聯網已廣泛應用于智能家居、工業自動化、智慧城市、健康醫療等多個領域。隨著5G、邊緣計算等技術的發展,物聯網的連接能力、數據處理速度和智能化水平不斷提升。人工智能作為模擬和擴展人類智能的科學,已經從理論研究走向了實際應用。深度學習、自然語言處理、計算機視覺等技術的發展,使得機器能夠執行圖像識別、語言翻譯、數據分析等復雜任務。人工智能的應用已經滲透到醫療、金融、教育、交通等多個行業,極大地提高了生產效率和生活質量。利用成都慧視推出的SpeedDP能夠幫助訓練跟蹤算法。湖北開發AI智能供應商
無人機識別算法找成都慧視。智慧小區AI智能方案**
在無人機識別這個領域,應用十分廣,因此針對于這方面的教學必不可少。目前國產化的識別傳感器當屬瑞芯微的RK3588,因此許多院校都會選擇采用RK3588來進行教學,成都慧視開發的Viztra-HE030圖像處理板就是利用RK3588打造而成,能夠根據不同規格的相機深度定制接口。(不同接口的RK3588圖像處理板)如果院校想進一步節約時間提升效率,成都慧視還可以提供訓練學習設備的整套方案。在高性能Viztra-HE030圖像處理板的基礎上,根據需求幫助選擇合適的相機,并且針對算法這塊,我們能夠提供一個高效的深度學習算法開發平臺SpeedDP,這個平臺能夠通過大量的識別檢測算法模型訓練開發,實現對新數據集的快速AI自動圖像標注,一方面省去大量手動標注工作,另一方面幫助提升算法性能。智慧小區AI智能方案**