SpeedDP包含如下五個模塊:1.數據集管理:采集并制作用于訓練和測試的數據集;2.項目配置:根據項目的實際情況,對調整相關配置參數進行定制化開發;3.模型訓練:完成訓練參數配置,開始模型訓練并監控訓練過程,損失精度可接受時,暫停訓練;4.模型測試:使用數據集或實際業務場景圖像視頻數據進行模型評估;5.模型部署:模型測試結果達到預期,進行模型轉化和部署。據客戶反饋,使用了慧視光電的SpeedDP后,初步提升效率在80%以上,開發周期縮短,同時可售可租的模式,也讓企業的選擇更加靈活,為所在單位降本增效提供幫助。現如今機器人技術已經成為科技領域前沿的技術。甘肅研發AI智能應用
無人機主導下的低空經濟在物流運輸、應急救援、智能巡檢、農林植保等領域有著突出應用,而在輔助無人機進行運轉的設備中,吊艙很重要。無人機吊艙中集各類傳感器于一體,能夠在無人機執行任務時,實時識別畫面中的物體,幫助操控者進行信息收集,做出判斷。而為了讓無人機進一步智能化,慧視光電通過在吊艙中植入高性能的圖像處理板,來實現AI和無人機的有機結合。這就是慧視VIZ-GT05V三軸雙可見光慣性穩定吊艙,它搭載一顆千萬級可見光CMOS傳感器和一顆星光級可見光CMOS傳感器,具備大小兩個視場角,能夠實時輸出1080P的高清可見光視頻,可實現夜間微弱光線下的目標觀測。吉林智慧園區AI智能減員增效SpeedDP是深度學習領域的產品。
無人機搭載如光電吊艙等帶有攝像頭的設備后,達到了實現智能識別的硬件條件,但是傳統的攝像頭只能獲取圖像,并不具備AI識別的功能。無人機AI識別算法的關鍵還是在于模仿人眼一樣進行視覺處理,然后AI進行智能提取和分析圖像,再和訓練模型進行快速比對,從而在無人機快速飛行的過程中做到實時目標識別。要想實現目標識別需要的硬件支持就是AI圖像處理板。圖像處理板通過算法的賦能,就能夠對目標區域的物體進行AI識別分析,從而做出判斷。由于無人機作業的環境復雜,因此對于圖像處理板的要求需要進一步提升。成都慧視開發的Viztra-HE030圖像處理板,采用了工業級芯片RK3588,采用先進架構,8核(4大4小)處理,算力能夠達到6.0TOPS。同時,慧視光電能夠根據需求環境定制豐富的輸出接口。
深度學習是機器學習的一個分支,只在近十年內才得到廣泛的關注與發展。它與機器學習不同的,它模擬我們人類自己去識別人臉的思路。比如,神經學家發現了我們人類在認識一個東西、觀察一個東西的時候,邊緣檢測類的神經元先反應比較大,也就是說我們看物體的時候永遠都是先觀察到邊緣。就這樣,經過科學家大量的觀察與實驗,總結出人眼識別的模式是基于特殊層級的抓取,從一個簡單的層級到一個復雜的層級,這個層級的轉變是有一個抽象迭代的過程的。深度學習就模擬了我們人類去觀測物體這樣一種方式,首先拿到互聯網上海量的數據,拿到以后才有海量樣本,把海量樣本抓取過來做訓練,抓取到重要特征,建立一個網絡,因為深度學習就是建立一個多層的神經網絡,肯定有很多層。有些簡單的算法可能只有四五層,但是有些復雜的,像剛才講的谷歌的,里面有一百多層。當然這其中有的層會去做一些數學計算,有的層會做圖像預算,一般隨著層級往下,特征會越來越抽象。深度學習是神經網絡和機器學習的進化,是人工智能社區的創意。
近年來,人們越來越認識到深入理解機器學習數據的必要性。不過,鑒于檢測大型數據集往往需要耗費大量人力物力,它在計算機視覺領域的廣泛應用,尚有待進一步開發。通常,在物體檢測中,通過定義邊界框,來定位圖像中的物體,不僅可以識別物體,還能夠了解物體的上下文、大小、以及與場景中其他元素的關系。同時,針對類的分布、物體大小的多樣性、以及類出現的常見環境進行了解,也有助于在評估和調試中發現訓練模型中的錯誤模式,從而更有針對性地選擇額外的訓練數據。SpeedDP進行圖像標注時的特點是快。吉林視頻識別AI智能供應商
不斷提高目標檢測算法的準確性和效率能夠幫助提升標注精度。甘肅研發AI智能應用
物體的識別主要指的是對三維世界的客體及環境的感知和認識,屬于高級的計算機視覺范疇。它是以數字圖像處理與識別為基礎的結合人工智能、系統學等學科的研究方向,其研究成果被廣泛應用在各種工業及探測機器人上。隨著計算機及信息技術的迅速發展,圖像識別技術的應用逐漸擴大到諸多領域,尤其是在面部及指紋識別、衛星云圖識別及臨床醫療診斷等多個領域日益發揮著重要作用。通常圖像識別技術主要是指采用計算機按照既定目標對捕獲的系統前端圖片進行處理,在日常生活中圖像識別技術的應用也十分普遍,比如車牌捕捉、商品條碼識別及手寫識別等。隨著該技術的逐漸發展并不斷完善,未來將具有更加廣泛的應用領域。甘肅研發AI智能應用