什么是微流控技術?微流控技術是一門精確控制和操縱流體的科學技術,這些流體在幾何空間上被限制在小規模流道中,通常流道系統的直徑低于100μm。對于科學家和工程師來講,微流體一詞的使用方式存在不同;對許多教授來說,微流控是一個科學領域,主要應用于通過直徑在100微米(μm)到1微米之間的流道研究和操縱微量流體。對微流控工程師來講,微流控芯片(通常稱為:生物MEMS芯片)的制造,主要是為了引導流體在直徑為100μm至1μm的流道系統中流動。微流控芯片技術用于基因測序。國產微流控芯片加工廠
皮膚微流控芯片(SoC):SoC是一種生物工程模型,其中皮膚組織在微流控系統內培養,其足以模擬天然人類皮膚的3D微環境。為了制造微型化的SoC模型,將人體皮膚組織整合到微流控平臺上,以便它可以模擬人體皮膚的體內條件。傳統的2D模型無法重建體內發現的多重3D細胞間和細胞間相互作用。然而,這可以在3DSoC模型的幫助下進行研究。表皮和真皮層,Lee等人使用3D生物打印的角質形成細胞和成纖維細胞來創建人體皮膚組織。該系統通常主要有三層:底層,中間層和上層。下層包含微血管通道。多孔膜位于中間/中間層,將上層和下層分開,而上層包括培養室和側向氣動通道。SoC的基本設置如圖所示。微血管通道為內皮單層的形成提供了機械支持。國產微流控芯片加工廠微流控芯片的發展優勢是什么?
安捷倫已有一些儀器使用趨向于具有更多可用性方面的經驗,并將這些經驗應用到了微流體技術開發上。微流體和生物傳感器的項目經理Kevin Killeen博士在接受采訪時說,安捷倫的目標是為終端使用者解除負擔,“由適宜的儀器產品組裝成的系統可以讓非專業人士操縱專業設備”。微流體技術也需要適時表現出其自身的實用性和可靠性,例如,納米級電噴霧質譜分析(nano-electrospray MS)不必考慮其頂端的閉合及邊帶的加寬,Killeen補充道:“對于生物學家來說,微流控技術的價值就在于此。”
微流控芯片對于胰島素的補充檢測:抗胰島素自身抗體是Ⅰ型糖尿病中出現的抗體,但當胰島素被固定在檢測平臺上時,表位結合位點的關鍵三級結構發生改變,故而難以用常規方法檢測,Zhang等在芯片表面噴涂生物相容的支鏈聚乙二醇層,用以保護胰島抗原的天然構象,該芯片可以在低樣本量下同時檢測多個胰島抗原特異性自身抗體,且檢測結果不受全血樣本中復雜背景的影響。也有研究團隊嘗試通過檢測自身抗體以對心血管疾病、慢性疾病作出診斷。Dinter等研究人員將微流體芯片和微珠技術相結合,用以檢測3種心血管疾病相關自身抗體并進行抗體滴度測定。Lin等人設計制造的免疫分析平臺可在45 min內檢測臨床患者血清抗tumour蛋白53(tumor protein 53,p53)自身抗體濃度,有望用于口腔鱗狀細胞cancer的篩查。微流控分為被動式微流控和主動式微流控。
基于微流控芯片的鏈式聚合反應(PCR)更進一步的產品是可集成樣品前處理的基因鑒定方法之一。由于具有高度重復和低消耗樣品或試劑的特性,這種自動化和半自動化的微流控芯片在早期的藥物研發中,得到了廣泛應用。Caliper的商業模式是將芯片看作是與昂貴的電子學和光學儀器相連接的一個消費品,目前,已被許多公司采用。每個芯片完成一天的實驗運作的成本費用大概是5美元,而高通量的應用成本是幾百到幾千美元,但預計可以重復循環使用幾百或幾千次,以一次分析包括時間和試劑的成本計算在內,芯片的成本與一般實驗室分析成本相當。腸道微流控芯片的應用。國產微流控芯片加工廠
微流控芯片的前景是什么?國產微流控芯片加工廠
模型生物微流控芯片的設計Choudhary等人設計了多通道微流控灌注平臺,用于培養斑馬魚胚胎并捕獲胚胎內各種組織和apparatus的實時圖像。其中包含三個不同的部分。這些包括一個微流控梯度發生器,一排八個魚缸和八個輸出通道。在魚缸中,魚胚胎被單獨放置。流體梯度發生器平臺支持以劑量依賴性方式分析藥物和化學品,具有高重現性和準確性。它提供了一個獨特的灌注系統,確保介質均勻恒定地流向魚缸,并有可能有效去除廢物。除了內部組織和apparatus的實時成像外,魚缸中的胚胎運動受到限制。為了驗證開發微流控芯片的可重復性,以丙戊酸為模型藥物,在有/沒有丙戊酸誘導的情況下測試了魚類的胚胎發育。結果表明,用丙戊酸處理的胚胎發育異常。國產微流控芯片加工廠