產品經工研所QPQ處理后,在表面會形成一層氮化層,為保證產品質量合格,會對同材質同狀態的樣塊或產品進行滲層深度、致密度以及滲氮層氮化物級別判定的金相檢測,通常有金相法和顯微硬度法來確定擴散層的深度,金相法相較于硬度法簡單便捷,對于鑄鐵件、碳鋼件、合金鋼鐵件等材料使用硒酸腐蝕,對于不銹鋼,模具鋼等材料使用硝酸酒精腐蝕劑腐蝕。在顯微鏡下觀察,從表面計算到針狀氮化物終了處或與心部有明顯差別處作為總滲層深度,除去化合物深度即為擴散層深度。QPQ表面處理可以使刀具具有更高的切削效率。石油QPQ疏松層
成都工研所的QPQ技術是金屬表面處理領域內的高新技術。從專業技術上來講,這種技術實際上是低溫鹽浴滲氮加鹽浴氧化或低溫鹽浴氮碳共滲加鹽浴氧化,是一種鹽浴復合處理技術。該技術是在氮化鹽浴和氧化鹽浴兩種鹽浴中處理工件,實現了滲氮工序和氧化工序的復合,滲層組織上是氮化物和氧化物的復合,性能上是耐磨性和抗蝕性的復合,工藝上是熱處理技術和防腐技術的復合。QPQ技術處理后的工件,其耐磨性和抗蝕性比常規處理和表面防腐技術有明顯提高,同時工件幾乎不變形,還具有節能等優點。成都工研所的QPQ技術打破了德國對該技術的國際壟斷,并先后榮獲國家科技進步二等獎、四川省科技進步一等獎,同時是國家重點推廣新項目。該技術已廣泛應用于汽車、模具等多個領域,取得了明顯的經濟效益和社會效益。高耐蝕QPQ替代高頻淬火經過QPQ表面處理的刀具具有更好的切削效果和壽命。
氣體滲氮是在含有活性氮、碳原子的氣氛中進行低溫氮、碳共滲從而獲得以氮為主的氮碳共滲層。氣體氮化的常用溫度為560-570℃,在該溫度下氮化層硬度值高,氮化時間通常為2-3h,隨著時間延長,氮化層深度增加緩慢。相較于QPQ處理工藝,雖然氣體滲氮在耐磨性方面表現良好,但是它的生產周期太長,且必須采用特殊的滲氮鋼,表面生成的Fe2N相脆性較大。工研所QPQ技術成產周期短,適用鋼種廣,且表面生成韌性較高的Fe2~3N相,同時由于工件幾乎不變形,處理后不必進行磨加工。特別是原來以抗蝕為目的的氣體滲氮,采用工研所QPQ技術以后,耐蝕性會有很大提高。
工研所的QPQ表面復合處理技術的關鍵是環保的鹽浴配方, 曾由德國公司壟斷,當時還屬于機械部成都工具研究所的研究員們經過十多年的不懈努力,自主開發了這項新技術,并已在中國大面積推廣,取得了很好的社會效益,使中國在金屬鹽浴表面強化改性技術領域達到了國際先進水平。他們從事的研究工作當年為“九五”國家重點推廣項目,在替代國外引進技術,提高產品的耐磨性和耐蝕性,解決產品變形難題,以及消除環境污染等方面,具有廣泛的應用前景,已經成為中國發展汽車摩托車等產業不可缺少的新技術。QPQ表面處理可以使刀具具有更高的切削精度。
工研所的《QPQ鹽浴復合處理技術及其成套設備》榮獲國家科技進步二等獎、四川省科技進步一等獎,同時是國家重點推廣新項目,編著《QPQ技術的原理與應用》行業專著一部,參與編寫制定QPQ行業標準。團隊通過承接國家、省部級科研項目如《石油管用深層QPQ防腐技術的開發研究》、《深層QPQ鹽浴奧氏體氮碳共滲與氧化工藝的研究與開發》、《超深層QPQ技術的研發》等,先后開發出第二代QPQ處理技術、超深層QPQ處理技術,低溫QPQ處理技術并實現推廣應用。通過QPQ表面處理,刀具的表面可以形成一層致密的氮化物層。機械QPQ化合物層
QPQ表面處理可以改善刀具的表面質量,提高加工精度。石油QPQ疏松層
QPQ是英文“Quench-Polish-Quench”的首字母縮寫,釋義為“淬火-拋光-淬火”。拋光是產品進行精細化處理的一種手段,還有噴丸(拋丸)、噴砂、研磨。可根據產品的技術要求(如外光要求、粗糙度要求、鹽霧時間要求)選擇合適的精細化處理方式。拋光是指利用機械、化學或者電化學的方式使工件表面粗糙度降低,以獲得光亮平整的表面,QPQ常見的拋光方式有振動拋光、桿式拋光、布倫拋光以及羊毛刷手動拋光等;噴丸主要通過去除工件表面的疏松層與氧化膜來提供工件的機械性能和防腐性能,經過工研所QPQ處理的42CrMo工件進行拋丸處理,發現工件表面氧化膜去除,化合物層完好,耐蝕性提高;噴砂的破壞力強于噴丸,在使用過程中通常使用80目以上的玻璃砂,噴砂工藝不僅應用于后處理上,對于某些不銹鋼產品,為確保產品外觀,在QPQ處理前也需要進行噴砂處理以消除表面殘余應力;研磨是通過研具與工件在一定壓力下的相對運動對工件表面進行精整加工,主要應用于表面粗糙度較高、精密零件采用的工藝,加工精度可達IT5~01,表面粗糙度可達Ra0.63~0.01μm,研磨方法一般可分為濕研、干研和半干研,目前使用較多的一般是銅棒研磨。石油QPQ疏松層