在一項毒理學研究中證明了在英國CNBio的Physiomimix單器官芯片MPS中灌注肝細胞的價值,該研究捕獲了一個已經明確的肝毒物的作用,并揭示了其類似物(以前被低估)毒性的新穎見解。代謝物以劑量依賴性方式形成,類似于患者用藥過量的情況,白蛋白分泌和谷胱甘肽耗竭測量分別評估肝細胞功能和毒性。而研究人員意識到,由單一細胞類型組成的MPS并不能為所有代謝研究提供完整的解決方案。為了提供更緊密地反映體內肝臟微體系結構復雜性的模型,已經使用多種細胞類型創建了共培養模型.哪個品牌的器官芯片比較好?類器官芯片發展前景
為了進一步改善體內藥代動力學和藥效學的預測,需要更復雜的器官芯片模型,包括與ADME相關的多種組織,包括腸道、肝臟和腎臟。多器guanMPS提供了研究器guan間相互作用和串擾的獨特能力。對于ADME,結合肝臟和腸道模型,口服藥物可以在一個單一系統中進行研究,該系統可以解釋通過腸道屏障的化合物通透性和肝臟代謝。在這里,我們介紹一種多器guan腸肝器官芯片,使用MPS-TL6耗材板。該板與CNBio的PhysioMimix多器官芯片實驗室臺式儀器兼容,由六個孔組成,每個孔有兩個隔室,一個Transwell還有肝臟。液體流量可以在每個腔室和從肝臟到transwell的互連通道中單獨控制。腸道屏障是由腸上皮細胞和杯狀細胞混合培養在一個可通透的Transwell薄膜上。器官芯片授權代理商器官芯片的操作還需要遵循相關實驗操作規范和安全管理要求。
器官芯片,也叫微生理系統,是在體外模擬構建的3D人體器guan模型,包括多種活ti細胞,功能組織界面,生物流體等,具有接近人體水平的生理功能,同時還能精確地控制多個系統參數,研究人員可更加直觀地研究機體行為,預測或再現藥物、毒物、輻射、香yan、煙霧、病原體和正常生物給人體帶來的影響。器官芯片系統旨在利用微流控芯片對微流體、細胞及其微環境的控制能力,構建集成微系統來模擬人體組織和器guan功能,為評估藥物和疫苗的有效性和生物安全性以及生物醫學研究提供接近體內生理和病理條件的低成本篩選和研究模型。英國CN Bio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。
英國CNBio的器官芯片系統,包括PhysioMimix實驗室臺式儀器,使研究人員能夠通過快速且預測性的基于人體組織的研究在實驗室中對人體生物學進行建模。該技術彌補了傳統細胞培養與人類研究之間的空白,并朝著模擬人類生物學條件前進,以支持新療法的加速發展。應用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養基中培養,該培養基誘導了臨床疾病早期階段的關鍵特征,包括細胞內脂肪負載,白蛋白產生增加和關鍵基因表達的變化(包括那些與代謝和胰島素抵抗有關的基因)。更多關于器官芯片的產品信息,歡迎咨詢上海曼博生物!器官芯片的應用還需對其成像、信號檢測等技術方面進行改進和提升。
器官芯片應用的機會在于疾病建模和表型篩選,以幫助識別和排序新的和已知的(包括孤兒藥和可用于重新用途的失敗化合物)化合物候選物。正在尋求改進的模型來解決動物模型不能很好滿足的條件(例如,乙型肝炎),并能夠進行宿主遺傳研究,藥物治療反應的建模以及鑒定可用于監測藥物治療的生物標記物。英國CNBio正在其基于MIT的器官芯片技術產品Physiomimix系統上開發先進的體外模型,以支持對高度流行的疾病的研究,這些疾病已對公共健康產生了公認的影響,例如非酒精性脂肪性肝炎(NASH)。人類NASH的微組織模型可以證明疾病的主要標志,提供了在細胞水平上闡明病理生理機制的機會。更多關于CNBIO器官芯片相關產品問題,歡迎咨詢上海曼博生物!器官芯片的操作過程中需注意對細胞生命周期、分化狀態等因素的調節。東南大學類器官芯片現狀
器官芯片的制備需遵循嚴格的質量管控體系和SOP程序。類器官芯片發展前景
通過提高通過標準工具識別風險的可預測性,或者通過提供其他方式無法獲得的更合適的模型,器官芯片有望填補許多空白。揭示原本不會被發現的毒性或揭示藥物不良事件之前的細胞功能變化的能力為具有重要價值。但是,為了更好地發揮器官芯片的潛力,應該將這些先進的體外模型收集到的見解與體內數據進行比較。除了用于藥物開發,器官芯片還可在多個領域發揮無可比擬的作用,包括環境毒理學評估,疾病模型研究,化妝品有效和安全性評估等。英國CNBio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。更多關于器官芯片的產品信息,歡迎咨詢上海曼博生物!類器官芯片發展前景