1965 年,第三代集成電路數控裝置問世,其體積更小、功率消耗更低,可靠性顯著提高,價格進一步下降,有力地促進了數控機床品種和產量的增長。60 年代末,出現了由一臺計算機直接控制多臺機床的直接數控系統(DNC,又稱群控系統),以及采用小型計算機控制的計算機數控系統(CNC),使數控裝置邁入以小型計算機化為特征的第四代。1974 年,使用微處理器和半導體存貯器的微型計算機數控裝置(MNC,即第五代數控系統)研制成功。與第三代相比,第五代數控裝置的功能提升了一倍,而體積縮小至原來的 1/20,價格降低了 3/4,可靠性也大幅提高。80 年代初,隨著計算機軟、硬件技術的進步,出現了具備人機對話式自動編制程序功能的數控裝置,且數控裝置愈發小型化,可直接安裝在機床上,同時數控機床的自動化程度進一步提升,具備自動監控刀具破損和自動檢測工件等功能 。高速切削數控機床采用輕量化結構,減少運動慣性提高速度。深圳多軸數控機床生產廠家
數控機床的輔助裝置主要包括潤滑系統、冷卻系統、排屑裝置、防護裝置等,它們對機床的正常運行和使用壽命起著重要的保障作用。潤滑系統用于對機床的運動部件進行潤滑,減少摩擦和磨損,常見的潤滑方式有手動潤滑、自動間歇潤滑和自動連續潤滑。冷卻系統用于對切削過程中的刀具和工件進行冷卻,降低切削溫度,提高刀具壽命和加工質量,常用的冷卻介質有切削液和壓縮空氣。排屑裝置用于及時排出加工過程中產生的切屑,防止切屑堆積影響加工精度和機床運行,常見的排屑裝置有鏈式排屑器、螺旋排屑器和刮板排屑器。防護裝置用于保護操作人員的安全和機床的正常運行,包括機床防護罩、電氣柜防護等,防護罩可防止切屑和切削液飛濺,電氣柜防護可防止灰塵和濕氣進入,影響電氣元件的性能。江門帶尾頂數控機床按需設計數控激光切割機切縫窄、熱影響區小,適合不銹鋼等材料加工。
數控機床選購的要點 - 加工需求匹配:選購數控機床首先需明確加工需求。根據加工零件尺寸大小,選擇工作臺尺寸和行程合適的機床,如加工大型零件需選用龍門式或大型臥式加工中心??紤]加工精度要求,對于精密零件加工,需選擇定位精度和重復定位精度高的機床,如高精度數控磨床定位精度可達 ±0.001mm。根據加工材料和工藝選擇機床類型,加工鋁合金等輕金屬材料,可選用高速加工中心;加工硬度較高的合金鋼、鈦合金等,需選擇具有強大切削力的重型機床。同時,評估加工批量大小,小批量生產可選擇柔性較好的數控車床或小型加工中心,大批量生產則需考慮自動化程度高、生產效率快的生產線設備,確保機床與加工需求精細匹配。
數控編程是數控機床加工的關鍵環節,通過編寫程序來控制機床的運動和加工過程。在數控編程中,G 代碼和 M 代碼是常用的指令代碼。G 代碼主要用于控制機床坐標軸的運動軌跡、插補方式、坐標系統設定等。例如,G00 指令表示快速定位,使刀具以快速度移動到指定位置;G01 指令用于直線插補,刀具以設定的進給速度沿直線移動到目標點;G02 和 G03 分別表示順時針和逆時針圓弧插補,可加工出各種圓弧輪廓。M 代碼主要用于控制機床的輔助功能,如 M03 表示主軸正轉,M05 表示主軸停止,M08 表示切削液開,M09 表示切削液關等。編程人員需要熟練掌握這些 G 代碼和 M 代碼的功能和使用方法,根據零件的加工要求編寫準確、高效的數控程序。例如,在編寫一個簡單的銑削零件的程序時,需要使用 G 代碼規劃刀具的運動軌跡,從起始位置快速定位到加工起點,然后通過直線插補和圓弧插補指令加工出零件的輪廓,同時使用 M 代碼控制主軸的啟停、切削液的開關等輔助功能 。柔性數控機床可快速切換加工任務,適應多品種小批量生產模式。
數控機床的基本工作原理:數控機床是一種通過計算機控制系統實現自動化加工的精密設備,其原理基于數字代碼指令驅動。首先,編程人員根據零件的設計圖紙,使用的 CAM(計算機輔助制造)軟件編制加工程序,將加工路徑、刀具運動軌跡、切削參數等信息轉化為數控系統能夠識別的 G 代碼和 M 代碼。這些代碼通過 USB、網絡等方式傳輸至數控機床的數控系統,系統解析代碼后,控制伺服電機驅動滾珠絲杠副,帶動工作臺或主軸沿 X、Y、Z 等坐標軸進行精確運動。同時,數控系統實時監測反饋裝置(如光柵尺、編碼器)傳回的位置和速度信息,形成閉環控制,確保刀具按照預定軌跡進行切削,從而實現高精度、高效率的自動化加工,相比傳統機床大幅提升加工精度和生產效率 。高速加工中心采用直線電機驅動,加速度高且運動平穩。珠海五軸數控機床直銷
數控電火花線切割機床利用電極絲切割,適合模具精密加工。深圳多軸數控機床生產廠家
數控機床的精密加工技術:精密加工技術是數控機床實現高精度零件加工的關鍵,涉及多個領域的技術創新。在超精密加工方面,數控機床采用氣浮導軌、液體靜壓軸承等高精度運動部件,導軌的直線度誤差可控制在 0.5μm/m 以內,主軸的回轉精度達到 0.05μm。同時,采用激光干涉儀、光柵尺等高精度測量裝置進行位置反饋,實現納米級的定位精度。在微納加工領域,數控機床通過微小刀具加工、電火花加工等技術,能夠制造出微米級甚至納米級的零件結構,如微機電系統(MEMS)器件、生物芯片等。此外,精密加工還需要嚴格控制加工環境,如溫度、濕度、振動等因素,通過恒溫車間、隔振地基等措施,確保加工過程的穩定性,實現高精度、高質量的零件加工 。深圳多軸數控機床生產廠家