“如何得到成本更低的綠氫,是制氫環節的任務和使命。”胡駿明認為,此前,燃料電池汽車被視為整個綠氫行業的先導產業,但下一步的關鍵是成本下降,同時帶動更大場景更大規模應用。“現階段,綠氫產業將在資源稟賦相對較好、應用場景比較豐富的區域率先發展,比如既有便宜綠電又有下游灰氫替代場景或燃料電池汽車示范的地方,進行制氫項目落地。”胡駿明指出,產業下一步將著力聚焦如何獲取更多更便宜的綠氫,推動下游車用、發電、化工等領域更大規模應用,由原來的需求側向供給側轉變。電解水制氫技術主要分為堿性電解水制氫和質子交換膜(PEM)電解水制氫兩種。山西附近電解水制氫設備企業
強堿性溶液作為電解液生產氫氣的工藝在20世紀中期被工業化。雖然其成本相對較低,但許多研究發現,使用堿性溶液作為電解質的過程消耗大量淡水資源,堿液易流失和腐蝕、能耗高,與可再生能源發電的適配性較差。新興的堿性AEM技術因其高效、低成本的優勢作為下一代堿性電解技術的發展方向而受到關注。它可以實現比PEM技術和SOEC技術同等甚至更高的電解效率,并降低了整體成本。然而,目前的陰離子交換膜有一定局限性,未來AEM技術的突破點可能是開發高穩定、長壽命的陰離子交換膜。目前,國內外對堿性溶液作為電解質技術的研究主要集中在尋找耐腐蝕的膜電極材料和合適的催化劑上。威海電解水制氫技術PEM電解水制氫是潛力的電解水制氫技術,有望成為“綠電+綠氫”生產模式的主流發展趨勢。
從目前國內外主流的堿性電解槽生產廠家對外公布的產品參數來分析,大部分設備制造商的制氫裝備出口壓力為 1.4MPa-1.6MPa 范圍,其中部分廠家也逐步提高堿性電解槽裝備出口制氫壓力,比較高可達 3.2MPa。制氫裝備出口壓力呈現逐步提高的趨勢,究其原因主要是氫氣的下游應用廠家的接入壓力較高。例如合成氨反應壓力約為 13.5MPa-15MPa、甲醇反應器壓力約為 4.5MPa-6MPa、加氫站輸入壓力為≥5MPa,氫氣下游實際應用壓力會有提高,而制氫裝備出口壓力至氫氣場景接入之間就存在一個氫氣壓差,就需要配置氫氣壓縮機,氫氣壓縮機根據流量、壓縮比、溫度、類型等因素影響,就會投入不同的氫氣壓縮成本,提升氫氣從制氫到用氫的單位氫氣成本價格。
電解水制氫是一種利用電將水分子分解為氫氣和氧氣的綠色高效制氫技術。電解水制氫的技術有很多,如堿性水電解、質子交換膜、高溫固體氧化物和陰離子交換膜電解等。電解水制氫純度高,能作為儲能載體儲存富余可再生能源。電解水制氫的整個過程只消耗水和電,不消耗其他化石資源。工藝簡單,操作方便,無碳產品,清潔無污染。設備占地面積小,多臺設備可同時生產,操作靈活。但同時,電解水制氫也是一種昂貴的制氫技術。生產氫氣的主要功耗約為4.5~5.5 kW h m?3。電解水制氫系統的性能指標主要包括制氫效率、氫氣純度、能耗以及設備壽命等。
貴金屬、貴金屬合金及其氧化物仍然是性能比較好的催化劑。然而,貴金屬催化劑的使用成本較高,開發高性能、低成本的催化劑非常重要。過渡金屬催化劑和非金屬催化劑具有制備成本低的優點,通過尺寸和形貌調控、導電載流子材料復合、原子摻雜、晶相調控、非晶態工程、界面工程等設計策略,可提高其催化活性。開發高效、低成本的催化劑是電解水制氫的關鍵步驟。貴金屬催化劑由于其成本高、存儲量低,難以支持大規模應用。過渡金屬和非金屬材料成本低,具有較大的豐度,是替代貴金屬催化劑的理想材料。圖7比較了不同類型的催化劑。與貴金屬催化劑相比,過渡金屬催化劑結構不穩定,催化機理復雜,非金屬催化劑的活性有待提高。這三類電解水制氫催化劑都有待進一步研究。PEM電解水制氫技術具有電流密度大、氫氣純度高、響應速度快等優點。泰安專業電解水制氫設備價格
PEM電解堆與燃料電池電堆存在極大相似性,大部分PEM電解堆研發工程師也一般具有燃料電池電堆開發經驗。山西附近電解水制氫設備企業
綠氫可以助力交通、化工、鋼鐵、石化等多領域深度脫碳,2022 年 3 月國家發改委發布《氫能產業發展中長期規劃(2021-2035 年)》,提到氫能正逐步成為全球能源轉型發展的重要載體之一,氫能是未來國家能源體系的重要組成部分,是用能終端實現綠色低碳轉型的重要載體,是戰略性新興產業和未來產業重點發展方向,規劃明確提到 2025年可再生能源制氫量達到 10 萬噸/年-20 萬噸/年,2035 年可再生能源制氫在終端能源消費中的比重明顯提升,對能源綠色轉型發展起到重要支撐作用。山西附近電解水制氫設備企業