GO作為一種新型的藥物載體材料,以其良好的生物相容性、較高的載藥率、靶向給藥等方面得到廣泛的關注。GO作為遞送藥物的載體,它不僅可以負載小分子藥物,也可以與抗體、DNA、蛋白質等大分子結合,如圖7.2所示。普通的有機藥物很多都含有π結構,而這些藥物的水溶性都非常差,而GO具有較好的親水性,因此可以借助分散性較好的GO基材料來解決這個問題,即將上述藥物負載到GO基材料上,形成GO-藥物混合物材料。這對改善難溶***物的水溶性,降低藥物不良反應以及提高藥物穩(wěn)定性和生物利用度等方面有非常重要的研究意義。GO制備簡單、自身具有受還原程度調控的帶隙,可以實現(xiàn)超寬譜(從可見至太赫茲波段)探測。濟南改性氧化石墨
解決GO在不同介質中的解理和分散等問題是實現(xiàn)GO廣泛應用的重要前提。此外,不同的應用體系往往要不同的功能體現(xiàn)和界面結合等特征,故而要經(jīng)常對GO表面進行修飾改性。GO本身含有豐富的含氧官能團,也可在GO表面引入其他功能基團,或者利用GO之間和GO與其它物質間的共價鍵或非共價鍵作用進行化學反應接枝其他官能團。由于GO結構的不確定性,以上均屬于一大類復雜的GO化學,導致采用化學方式對GO進行修飾與改性機理復雜化,很難得到結構單一的產(chǎn)品。盡管面臨諸多難以解釋清楚的問題,但是對GO復合材料優(yōu)異性能的期望使得非常必要總結對GO進行修飾改性的常用方法和技術,同時也是氧化石墨烯相關材料應用能否實現(xiàn)穩(wěn)定、可控規(guī)模化應用的關鍵。濟南改性氧化石墨石墨烯在可見光范圍內的光吸收系數(shù)近乎常數(shù)。
工業(yè)化和城市化導致天然地表水體中的有毒化學品排放,其中包括酚類、油污、***、農(nóng)藥和腐植酸等有機物,這些污染物在制藥,石化,染料,農(nóng)藥等行業(yè)的廢水中***檢測到。許多研究集中在從水溶液中有效去除這些有毒污染物,如光催化,吸附和電解54-57。在這些方法中,由于吸附技術低成本,高效率和易于操作,遠遠優(yōu)于其他技術。與傳統(tǒng)的膜材料不同,GO作為碳質材料與有機分子的相互作用機理差異很大。新的界面作用可在GO膜內引入獨特的傳輸機制,導致更有效地從水中去除有機污染物。石墨烯和GO對有機物的吸附機理的研究表明,疏水作用、π-π鍵交互作用、氫鍵、共價鍵和靜電相互作用會影響石墨烯和GO對有機物的吸附能力。
利用化學交聯(lián)和物理手段調控氧化石墨烯基膜片上的褶皺和片層間的距離是制備石墨烯基納濾膜的主要手段。由于氧化石墨烯片層間隙距離小,Jin等24利用真空過濾法在石墨烯片層間加入單壁碳納米管(SWCNT),氧化石墨烯片層間的距離明顯增加,水通量可達到6600-7200L/(m2.h.MPa),大約是傳統(tǒng)納濾膜水通量的100倍,對于染料的截留率達到97.4%-98.7%。Joshi等25研究了真空抽濾GO分散液制備微米級厚度層狀GO薄膜的滲透作用。通過一系列實驗表明,GO膜在干燥狀態(tài)下是真空壓實的,但作為分子篩浸入水中后,能夠阻擋所有水合半徑大于0.45nm的離子,半徑小于0.45nm的離子滲透速率比自由擴散高出數(shù)千倍,且這種行為是由納米毛細管網(wǎng)絡引起的。異常快速滲透歸因于毛細管樣高壓作用于石墨烯毛細管內部的離子。GO薄膜的這一特性在膜分離領域具有非常重要的應用價值。氧化石墨可以用于提高環(huán)氧樹脂、聚乙烯、聚酰胺等聚合物的導熱性能。
氧化石墨烯同時具有熒光發(fā)射和熒光淬滅特性,廣義而言,其自身已經(jīng)可以作為一種傳感材料,在生物、醫(yī)學領域的應用充分說明了這一點。經(jīng)過功能化的氧化石墨烯/還原氧化石墨烯在更加***的領域內得到了應用,特別在光探測、光學成像、新型光源、非線性器件等光電傳感相關領域有著豐富的應用。光電探測器是石墨烯問世后**早應用的領域之一。2009 年, Xia 等利用機械剝離的石墨烯制備出了***個石墨烯光電探測器(MGPD)[2],如圖9.6,以1-3 層石墨烯作為有源層,Ti/Pd/Au 作源漏電極,Si 作為背柵極并在其上沉淀300nm 厚的SiO2,在電極和石墨烯的接觸面上因為功函數(shù)的不同,能帶會發(fā)生彎曲并產(chǎn)生內建電場。GO成為制作傳感器極好的基本材料。濟南改性氧化石墨
氧化石墨是由牛津大學的化學家本杰明·C·布羅迪在1859年用氯酸鉀和濃硝酸混合溶液處理石墨的方法制得。濟南改性氧化石墨
還原氧化石墨烯(RGO)在邊緣處和面內缺陷處具有豐富的分子結合位點,使其成為一種很有希望的電化學傳感器材料。結合原位還原技術,有很多研究使用諸如噴涂、旋涂等基于溶液的技術手段,利用氧化石墨烯(GO)在不同基底上制造出具備石墨烯相關性質的器件,以期在一些場合替代CVD制備的石墨烯。結構決定性質。氧化石墨烯(GO)的能級結構由sp3雜化和sp2雜化的相對比例決定[6],調節(jié)含氧基團相對含量可以實現(xiàn)氧化石墨烯(GO)從絕緣體到半導體再到半金屬性質的轉換濟南改性氧化石墨