關鍵性質分析:通過上述納米力學測試方法,致城科技能夠深入分析消費電子產品所用材料的多種關鍵性質:硬度與模量:硬度是指材料抵抗局部變形或劃傷能力的重要指標,而模量則反映了材料在受力時變形程度。兩者直接影響到消費電子產品在日常使用中的耐用性。屈服強度與斷裂韌性:屈服強度是指材料開始發生塑性變形時所需施加的應力,而斷裂韌性則衡量了材料抵抗裂紋擴展能力的重要參數。這些特性對于保證產品結構安全至關重要,尤其是在受到沖擊或壓力時。納米力學測試需要使用專屬的納米力學測試儀器,如納米壓痕儀和納米拉伸儀等。核工業納米力學測試廠商
致城科技的解決方案:微米壓痕與維氏硬度測試:通過連續加載-卸載曲線精確測量涂層硬度與彈性模量,評估鉆頭表面的抗塑性變形能力。高溫原位測試:模擬井下環境(溫度>300℃、壓力>20MPa),研究涂層的熱穩定性與氧化行為。微米劃痕測試:量化涂層與基體的結合力,優化鍍層工藝(如金剛石涂層鉆頭的臨界載荷提升30%)。案例:某油田企業采用致城科技的HT-1000高溫測試系統,發現鎢碳合金鉆頭在250℃環境下硬度下降率從15%降至7%,涂層壽命延長2倍。核工業納米力學測試廠商超合金的微區力學性能反映其組織穩定性。
納米力學性能測試方法:納米力學測試機構采用的測試方法多種多樣,以適應不同納米材料的測試需求。以下是一些常用的測試方法:1. 納米壓痕法:利用壓頭在納米材料表面產生壓痕,通過測量壓痕的形貌和尺寸,計算材料的硬度、彈性模量等性能參數。該方法具有操作簡單、測試精度高的優點,是納米力學性能測試中常用的手段之一。2. 納米拉伸法:通過制備納米尺度的試樣,利用拉伸設備對其進行拉伸測試,測量其應力-應變曲線,從而得到抗拉強度、屈服強度等參數。該方法能夠直接反映材料在拉伸過程中的力學行為,對于評估材料的拉伸性能具有重要意義。3. 基于原子力顯微鏡的測試方法:利用原子力顯微鏡的高分辨率和靈敏性,通過測量探針與納米材料之間的相互作用力,研究材料的力學性能和表面形貌。該方法具有非接觸式、高分辨率的優點,特別適用于研究納米尺度下的材料力學行為。
應用舉例:納米纖維拉伸測試,納米力學測試單軸拉伸測試是納米纖維定量力學分析較常見的方法。用Pt-EBID將納米纖維兩端分別固定在FT-S微力傳感探針和樣品架上,拉伸直至斷裂。從應力-應變曲線計算得到混合納米纖維的平均屈服/極限拉伸強度為375MPa/706Mpa,金納米纖維的平均屈服/極限拉伸強度為451MPa/741Mpa。對單根納米纖維進行各種機械性能的定量測試需要通用性極高的儀器。這類設備必須能進行納米機器人制樣和力學測試。并且由于納米纖維軸向形變(延長)小,高位移分辨率和優異的位置穩定性(位置漂移小)對于精確一定測量是至關重要的。納米力學測試技術為納米材料在航空航天、汽車制造等領域的應用提供了有力支持。
科學研究支持:揭示材料行為的微觀機制。作為基礎研究的強大工具,納米力學測試使科學家能夠在微觀尺度量化物質行為,驗證理論模型,發現新現象。致城科技每年支持超過百項學術研究項目,測試數據出現在眾多高影響力論文中。公司與科研機構的合作模式包括測試服務、方法開發和聯合攻關等多個層次。在新型高熵合金研究中,致城科技的原位高溫納米力學測試系統幫助研究團隊初次觀察到B2相在特定溫度區間的異常強化現象。通過精確控制測試溫度和加載速率,并同步采集聲發射信號,揭示了相變誘導塑性變形的微觀機制。這項發現為設計具有溫度自適應性能的新合金提供了重要思路,相關成果發表在《Nature Materials》上。金屬玻璃的非晶結構使其具有獨特的納米力學響應。廣西電線電纜納米力學測試參考價
納米力學測試可以幫助研究人員了解納米材料的力學性能與結構之間的關系,為納米材料的設計和優化提供指導。核工業納米力學測試廠商
AFAM 利用探針和樣品之間的接觸共振進行測試,基于對探針的動力學特性以及針尖樣品之間的接觸力學行為分析,可以通過對探針接觸共振頻率、品質因子、振幅、相位等響應信息的測量,實現被測樣品力學性能的定量化表征。AFAM 不只可以獲得樣品表面納米尺度的形貌特征,還可以測量樣品表面或亞表面的納米力學特性。AFAM 屬于近場聲學成像技術,它克服了傳統聲學成像中聲波半波長對成像分辨率的限制,其分辨率取決于探針針尖與測試樣品之間的接觸半徑大小。AFM 探針的針尖半徑很小(5~50 nm),且施加在樣品上的作用力也很小(一般為幾納牛到幾微牛),因此AFAM 的空間分辨率極高,其橫向分辨率與普通AFM 一樣可以達到納米量級。與納米壓痕技術相比,AFAM 在分辨率方面具有明顯的優勢,通常認為其測試過程是無損的。此外,AFAM 在成像質量和速度方面均明顯優于納米壓痕。目前,AFAM 已經普遍應用于納米復合材料、智能材料、生物材料、納米材料和薄膜系統等各種先進材料領域。核工業納米力學測試廠商