AFAM 利用探針和樣品之間的接觸共振進行測試,基于對探針的動力學特性以及針尖樣品之間的接觸力學行為分析,可以通過對探針接觸共振頻率、品質因子、振幅、相位等響應信息的測量,實現被測樣品力學性能的定量化表征。AFAM 不只可以獲得樣品表面納米尺度的形貌特征,還可以測量樣品表面或亞表面的納米力學特性。AFAM 屬于近場聲學成像技術,它克服了傳統聲學成像中聲波半波長對成像分辨率的限制,其分辨率取決于探針針尖與測試樣品之間的接觸半徑大小。AFM 探針的針尖半徑很小(5~50 nm),且施加在樣品上的作用力也很小(一般為幾納牛到幾微牛),因此AFAM 的空間分辨率極高,其橫向分辨率與普通AFM 一樣可以達到納米量級。與納米壓痕技術相比,AFAM 在分辨率方面具有明顯的優勢,通常認為其測試過程是無損的。此外,AFAM 在成像質量和速度方面均明顯優于納米壓痕。目前,AFAM 已經普遍應用于納米復合材料、智能材料、生物材料、納米材料和薄膜系統等各種先進材料領域。納米力學測試可以用于評估納米材料的熱力學性能,為納米材料的應用提供參考依據。四川國產納米力學測試
微納米材料力學性能測試系統是一種用于機械工程領域的科學儀器,于2008年11月18日啟用??v向載荷力和位移。載荷力分辨率:3nN(在施加1μN的條件下);較小載荷接觸力:<100nN;較大載荷:10mN;位移分辨率:0.0004nm;較小位移:<0.2nm;較大位移:5μm;熱漂移:<0.05nm/s(在室溫條件下)。 橫向載荷力和位移。載荷力的分辨率:0.5μN;較小橫向力:<5μN;較大橫向力:2mN;位移分辨率:3nm;較小位移:<5nm;較大位移:15μm;熱漂移:<0.05nm/s(在室溫條件下)。磨損面積范圍:4μm x 4μm 到 60μm x 60μm;磨損速率:≤180μm/s;縱向載荷范圍:100nN – 1mN。X-Y stage。江西原位納米力學測試技術納米力學測試是一種通過納米尺度下的力學性質來研究材料特性的方法。
量子效應也決定納米結構新的電,光和化學性質。因此量子效應在鄰近的納米科學,納米技術,如納米電子學,先進能源系統和納米生物技術學科范圍得到更多注意。納米測量技術是利用改制的掃描隧道顯微鏡進行微形貌測量,這個技術已成功的應用于石墨表面和生物樣本的納米級測量。安全一直是必須認真考慮的問題。電測量工具會輸出有危險的、甚至是致命的電壓和電流。清楚儀器使用中何時會發生這些情形顯得極為重要,只有這樣人們才能采取恰當的安全防范手段。請認真閱讀并遵從各種工具附帶的安全指示。
原子力顯微鏡(AFM),原子力顯微鏡(AtomicForce Microscopy,簡稱AFM)是一種常用的納米級力學性質測試方法。它通過在納米尺度下測量材料表面的力與距離之間的關系,來獲得材料的力學性質信息。AFM的基本工作原理是利用一個具有納米的探針對樣品表面進行掃描,并測量在探針與樣品之間的力的變化。使用AFM可以獲得材料的力學性質參數,如納米硬度、彈性模量和塑性變形等信息。此外,AFM還可以進行納米級別的形貌表征,使得研究人員可以直觀地觀察到材料的表面形貌和結構。通過納米力學測試,我們可以深入了解納米材料在受到外力作用時的變形和破壞機制。
SFM納米力學測試。在掃描隧道顯微鏡(STM)發明以后,基于STM,人們又陸續發展一系列相似的掃描成像顯微技術,它們包括原子力顯微鏡(AFM)、摩擦力顯微鏡(FFM)、磁力顯微鏡、靜電力顯微等,統稱為掃描力顯微鏡(SFM)。由于這些掃描力顯微鏡成像的工作原理是基于探針與被測樣品之間的原子力、摩擦力、磁力或靜電力,因此,它們自然地成為測量探針與被測樣品之間微觀原子力、摩擦力、磁力或靜電力的有力工具。采用原子力顯微鏡對飽和鐵轉鐵蛋白和脫鐵轉鐵蛋白與轉鐵蛋白抗體之間的相互作用進行研究通過原子力顯微鏡對分子間力的曲線進行探測,比較飽和鐵轉鐵蛋白和脫鐵轉鐵蛋白與抗體之間的作用力的差異。在納米力學測試中,常用的測試方法包括納米壓痕測試、納米拉伸測試和納米彎曲測試等。納米力學性能測試服務
通過納米力學測試,可以測量材料的硬度、彈性模量、粘附性等關鍵參數。四川國產納米力學測試
研究液相環境下的流體載荷對探針振動產生的影響可以將AFAM 定量化測試應用范圍擴展至液相環境。液相環境下增加的流體質量載荷和流體阻尼使探針振動的共振頻率和品質因子都較大程度上減小。Parlak 等采用簡單的解析模型考慮流體質量載荷和流體阻尼效應,可以在液相環境下從探針的接觸共振頻率導出針尖樣品的接觸剛度值。Tung 等通過嚴格的理論推導,提出通過重構流體動力學函數的方法,將流體慣性載荷效應進行分離。此方法不需要預先知道探針的幾何尺寸及材料特性,也不需要了解周圍流體的力學性能。四川國產納米力學測試