智慧動鋰自主研發生產的高壓儲能/工商業儲能方案,采用二級或三級BMS架構,集成組網方式靈活,可支持單簇使用或多簇電池并機使用,可同時在線監測系統總壓、總電流、絕緣電阻、繼電器粘連,對電芯安全狀態實時監測、智能均衡、故障診斷,結合準確的SOX估算,保證儲能系統安全、穩定運行,且支持海量數據采集、AI算法分析、復雜邏輯處理、本地數據存儲及邊緣計算等應用,滿足DC1500V安規設計。模塊化設計,完善多級保護,可多簇靈活配置。電池管理系統(BMS)的主要功能包括監控、保護和優化電池性能。動力電池BMS電池管理系統云平臺開發
船用液冷儲能柜配置一套能源管理EMS系統,對電池系統、變流系統、配電系統等狀態進行監控及能源優化調度;能夠實時動態、綜合掌握各單元的運行情況,提供完善的運行數據查看、報警提醒及報表分析等功能,為設備運行情況分析、設備問題判斷和運行策略優化提供有力的決策依據,并完成上級監控系統的信息交換及指令傳遞。EMS的功能主要運行控制策略是削峰填谷、需量管理控制。同時,EMS系統還支持云平臺、APP查詢數據,監測現場系統運行狀態。低速電動車BMS電池管理系統工作原理船用液冷儲能柜BMS電池管理系統采用主從兩級架構。
儲能BMS主動均衡和被動均衡的區別主要有能量的方式、啟動均衡條件、均衡電流、成本等,具體區別如下:能量的方式:主動均衡-主動采用儲能器件,將荷載較多能量的電芯部分能量轉移到能量較少的電芯上,是能量的轉移。被動均衡運用電阻,將高荷電電量電芯的能量消耗掉,減少不同電芯之間差距,是能量的消耗。啟動均衡條件:只要壓差大于設定值便開始啟動主動均衡,均衡時間一般是24小時都在工作。在電池快接近充滿的電壓下才啟動被動放電均衡,均衡時間一般就幾個小時。均衡電流:主動均衡電流可達1-10A,充放電過程均可實現,均衡效果明顯。被動均衡電流35mA-200mA不等,均衡電流越大,發熱越嚴重。成本:主動均衡電路復雜,故障率高,成本高。被動均衡軟硬件實現簡單,成本低。隨著電芯制造工藝不斷提升,電芯間的一致性越來越高。出于電路結構和成本考慮,被動均衡的策略仍然是市場的主流選擇。
電池管理系統大的方向講,在電動汽車和混合動力汽車中必不可少,必須對電池進行檢測,才能保證電池正常充放電,防止過充和過放,延長使用壽命,保證續航里程。鋰電池能量密度高,電池內部化學物質活性強。當電芯出現過充、過放等非正常使用時,極有可能出現電池損壞,極端情況下,還會導致起火。因此,鋰電池需要有一套監控系統,隨時監控鋰電池的電壓,電流等參數,一旦超過事先設定的閾值,則直接關斷電池主回路。因此,電池管理系統BMS是電動車的關鍵要素。兩輪電動車BMS鋰電池保護板行業內成為兩輪電動車電池保護板分為硬件板與軟件板。
庫侖計數法是測量電池容量的理想方法,即通過測量一段時間內流入和流出的電流,進而得到流入或者流出電量。SOC=總容量-(放電電流-充電電流)*時間根據電池測量系統的不同,有多種測量放電或充電電流的方法。電流分流器:分流器是一個低歐姆電阻器,用于測量電流。整個電流流經分流器并產生電壓降,然后進行測量。這種方法會在電阻器上產生輕微的功率損耗。霍爾效應傳感器:這種傳感器通過磁場變化測量電流。它消除了電流分流器典型的功率損耗問題,但成本較高,且無法承受大電流。巨磁電阻(GMR)傳感器:這種傳感器用作磁場檢測器,比霍爾效應傳感器更靈敏(也更昂貴)。它們的精確度很高。庫侖測量涉及的計算相當復雜,主要由微控制器完成。庫侖計數法是一種安培小時積分法,可有效量化一段時間內的電量,提供動態、連續的狀態更新。開路電壓(OCV)通過計算電壓與電量之間的直接關系,快速評估剩余電量。不過,庫侖計數法會因傳感器漂移或電池性能變化而隨時間累積誤差,而開路電壓則也可能受到溫度波動和電池老化的影響。兩輪電動車電池BMS保護板分為硬件板與軟件板。鋰電池BMS電池管理系統軟件設計
兩輪電動車BMS行業內成為兩輪電動車電池保護板分為硬件板與軟件板。動力電池BMS電池管理系統云平臺開發
主動均衡技術主動均衡又稱非能量耗散式均衡,其原理在充電和放電循環期間,是將能量高的電芯內的能量轉移到能量低的電芯中去,使得電池PACK內的電荷得到重新分配,從而縮短充電時間,延長放電使用時間。在適用場景上,主動均衡更加適用于大容量、高串數的鋰電池組應用。BMS被動均衡技術先于主動均衡在電動市場中應用,技術也較為成熟些。主動均衡則較為復雜,變壓器方案的設計以及開關矩陣的設計無疑會使成本明顯增加。但主動均衡相比采用能量傳遞分配的原則,因而能量利用率相比被動均衡更高。在實際應用中,主動均衡技術也被普遍認為更為高效和合理。例如,科列自主研發的雙向DC-DC主動均衡芯片,它采用了先進的智能算法,能夠快速有效地補償電池組產生的差異,確保電池一致性,延長電池組的使用壽命和平均無故障時間。動力電池BMS電池管理系統云平臺開發