三維微納結構的跨尺度加工技術:跨尺度加工技術實現了從納米級到毫米級結構的一體化制造,滿足復雜微流控系統對多尺度功能單元的需求。公司結合電子束光刻(EBL,分辨率10nm)、紫外光刻(分辨率1μm)與機械加工(精度10μm),在單一基板上構建跨3個數量級的微結構。例如,在類***培養芯片中,納米級表面紋理(粗糙度Ra<50nm)促進細胞黏附,微米級流道(寬度50μm)控制營養物質輸送,毫米級進樣口(直徑1mm)兼容外部管路。加工過程中,通過工藝分層設計,先進行納米結構制備(如EBL定義細胞外基質蛋白圖案),再通過紫外光刻形成中層流道,***機械加工完成宏觀接口,各層結構對準誤差<±2μm。該技術突破了單一工藝的尺度限制,實現了功能的跨尺度集成,在芯片實驗室(Lab-on-a-Chip)中具有重要應用。公司已成功制備包含10nm電極間隙、1μm流道與1mm閥門的復合芯片,用于單分子電信號檢測,信號分辨率提升至10fA,為納米生物技術與微流控工程的交叉融合提供了關鍵制造能力。基于MEMS技術的RF射頻器件是什么?吉林MEMS微納米加工風格
金屬流道PDMS芯片與PET基板的鍵合工藝:金屬流道PDMS芯片通過與帶有金屬結構的PET基板鍵合,實現柔性微流控芯片與剛性電路的集成,兼具流體處理與電信號控制功能。鍵合前,PDMS流道采用氧等離子體活化處理(功率100W,時間30秒),使表面羥基化;PET基板通過電暈處理提升表面能,濺射1μm厚度的銅層并蝕刻形成電極圖案。鍵合過程在真空環境下進行,施加0.5MPa壓力并保持30分鐘,形成化學共價鍵,剝離強度>5N/cm。金屬流道內的電解液與外部電路通過鍵合區的Pad連接,接觸電阻<100mΩ,確保信號穩定傳輸。該技術應用于微流控電化學檢測芯片時,可在10μL的反應體系內實現多參數同步檢測,如pH、離子濃度與氧化還原電位,檢測精度均優于±1%。公司優化了鍵合設備的溫度與壓力控制算法,將鍵合缺陷率(如氣泡、邊緣溢膠)降至0.5%以下,支持大規模量產。此外,PET基板的可裁剪性與低成本特性,使得該芯片適用于一次性檢測試劑盒,單芯片成本較玻璃/硅基方案降低60%,為POCT設備廠商提供了高性價比的集成方案。貴州MEMS微納米加工檢測MEMS的主要材料是什么?
PDMS金屬流道芯片的復合加工工藝:PDMS金屬流道芯片通過在柔性PDMS流道內集成金屬鍍層,實現流體控制與電信號檢測的一體化設計。加工流程包括:首先利用軟光刻技術在硅模上制備50-200μm寬度的流道結構,澆筑PDMS預聚體并固化成型;然后通過氧等離子體處理流道表面,使其親水化以促進金屬前驅體吸附;采用磁控濺射技術沉積50-200nm厚度的金/鉑金屬層,經化學鍍增厚至1-5μm,形成連續導電流道;***與PET基板通過等離子體鍵合密封,確保流體無泄漏。金屬流道的表面粗糙度<50nm,電阻<10Ω/cm,適用于電化學檢測、電滲泵驅動等場景。典型應用如微流控電化學傳感器,在10μL/min流速下,對葡萄糖的檢測靈敏度達50μA?mM?1?cm?2,線性范圍0.1-20mM,檢測下限<50μM。公司開發的自動化生產線可實現流道尺寸的精細控制(誤差<±2%),并支持金屬層圖案化設計,如叉指電極、螺旋流道等,滿足不同傳感器的定制需求,為生物檢測與環境監測領域提供了柔性化、集成化的解決方案。
射頻MEMS器件分為MEMS濾波器、MEMS開關、MEMS諧振器等。射頻前端模組主要由濾波器、低噪聲放大器、功率放大器、射頻開關等器件組成,其中濾波器是射頻前端中重要的分立器件,濾波器的工藝就是MEMS,在射頻前端模組中占比超過50%,主要由村田制作所等國外公司生產。因為沒有適用的國產5GMEMS濾波器,因此華為手機只能用4G,也是這個原因,可見MEMS濾波器的重要性。濾波器(SAW、BAW、FBAR等),負責接收通道的射頻信號濾波,將接收的多種射頻信號中特定頻率的信號輸出,將其他頻率信號濾除。以SAW聲表面波為例,通過電磁信號-聲波-電磁信號的兩次轉換,將不受歡迎的頻率信號濾除。MEMS技術常用工藝技術組合有:紫外光刻、電子束光刻EBL、PVD磁控濺射、IBE刻蝕、ICP-RIE深刻蝕。
MEMS制作工藝柔性電子的常用材料-PI:
柔性PI膜是一種由聚酰亞胺(PI)構成的薄膜材料,它是通過將均苯四甲酸二酐(PMDA)與二胺基二苯醚(ODA)在強極性溶劑中進行縮聚反應,然后流延成膜,然后經過亞胺化處理得到的高分子絕緣材料。柔性PI膜擁有許多獨特的優點,如高絕緣性、良好的粘結性、強的耐輻射性和耐高溫性能,使其成為一種綜合性能很好的有機高分子材料。
柔性PI膜的應用非常廣,尤其在電子、液晶顯示、機械、航空航天、計算機、光伏電池等領域有著重要的用途。特別是在液晶顯示行業中,柔性PI膜因其優越的性能而被用作新型材料,用于制造折疊屏手機的基板、蓋板和觸控材料。由于OLED顯示技術的快速發展,柔性PI膜已成為替代傳統ITO玻璃的新材料之一,廣泛應用于智能手機和其他可折疊設備的制造。 微納加工產業化能力覆蓋設計、工藝、量產全鏈條,月產能達 50,000 片并持續技術創新。云南MEMS微納米加工貨源充足
基于 0.35/0.18μm 高壓工藝的神經電刺激 SoC 芯片,實現多通道控制與生物相容性優化。吉林MEMS微納米加工風格
超薄石英玻璃雙面套刻加工技術解析:在厚度100μm以上的超薄石英玻璃基板上進行雙面套刻加工,是實現高集成度微流控芯片與光學器件的關鍵技術。公司采用激光微加工與紫外光刻結合工藝,首先通過CO?激光切割實現玻璃基板的高精度成型(邊緣誤差<±5μm),然后利用雙面光刻對準系統(精度±1μm)進行微結構加工。正面通過干法刻蝕制備5-50μm深度的微流道,背面采用離子束濺射沉積100nm厚度的金屬電極層,經光刻剝離形成微米級電極陣列。針對玻璃材質的脆性特點,開發了低溫鍵合技術(150-200℃),使用硅基粘合劑實現雙面結構的密封,鍵合強度>3MPa,耐水壓>50kPa。該技術應用于光聲成像芯片時,正面微流道實現樣本輸送,背面電極陣列同步激發光聲信號,光-電信號延遲<10ns,成像分辨率達50μm。此外,超薄玻璃的高透光性(>95%@400-1000nm)與化學穩定性,使其成為熒光檢測、拉曼光譜分析等**芯片的優先基板,公司已實現4英寸晶圓級批量加工,成品率>90%,為光學微系統集成提供了可靠的制造平臺。吉林MEMS微納米加工風格