VMOS場效應管,VMOS場效應管(VMOSFET)簡稱VMOS管或功率場效應管,其全稱為V型槽MOS場效應管。它是繼MOSFET之后新發展起來的高效、功率開關器件。它不只繼承了MOS場效應管輸入阻抗高(≥108W)、驅動電流小(左右0.1μA左右),還具有耐壓高(較高可耐壓1200V)、工作電流大(1.5A~100A)、輸出功率高(1~250W)、跨導的線性好、開關速度快等優良特性。正是由于它將電子管與功率晶體管之優點集于一身,因此在電壓放大器(電壓放大倍數可達數千倍)、功率放大器、開關電源和逆變器中正獲得普遍應用。避免將場效應管的柵極與其它電極短路,以免損壞器件。同時,注意防止靜電對場效應管造成損害。江門增強型場效應管供應
以N溝道為例,它是在P型硅襯底上制成兩個高摻雜濃度的源擴散區N+和漏擴散區N+,再分別引出源極S和漏極D。源極與襯底在內部連通,二者總保持等電位。當漏接電源正極,源極接電源負極并使VGS=0時,溝道電流(即漏極電流)ID=0。隨著VGS逐漸升高,受柵極正電壓的吸引,在兩個擴散區之間就感應出帶負電的少數載流子,形成從漏極到源極的N型溝道,當VGS大于管子的開啟電壓VTN(一般約為+2V)時,N溝道管開始導通,形成漏極電流ID。場效應晶體管于1925年由Julius Edgar Lilienfeld和于1934年由Oskar Heil分別發明,但是實用的器件一直到1952年才被制造出來(結型場效應管,Junction-FET,JFET)。1960年Dawan Kahng發明了金屬氧化物半導體場效應晶體管(Metal-Oxide-Semiconductor Field-effect transistor, MOSFET),從而大部分代替了JFET,對電子行業的發展有著深遠的意義。徐州絕緣柵場效應管加工場效應管還具有低輸出阻抗,可以提供較大的輸出電流。
下面對MOS失效的原因總結以下六點,然后對1,2重點進行分析:1:雪崩失效(電壓失效),也就是我們常說的漏源間的BVdss電壓超過MOSFET的額定電壓,并且超過達到了一定的能力從而導致MOSFET失效。2:SOA失效(電流失效),既超出MOSFET安全工作區引起失效,分為Id超出器件規格失效以及Id過大,損耗過高器件長時間熱積累而導致的失效。3:體二極管失效:在橋式、LLC等有用到體二極管進行續流的拓撲結構中,由于體二極管遭受破壞而導致的失效。4:諧振失效:在并聯使用的過程中,柵極及電路寄生參數導致震蕩引起的失效。5:靜電失效:在秋冬季節,由于人體及設備靜電而導致的器件失效。6:柵極電壓失效:由于柵極遭受異常電壓尖峰,而導致柵極柵氧層失效。
場效應管的作用:1、場效應管可應用于放大,由于場效應管放大器的輸入阻抗很高,因此耦合電容可以容量較小,不必使用電解電容器。2、場效應管很高的輸入阻抗非常適合作阻抗變換,常用于多級放大器的輸入級作阻抗變換。3、場效應管可以用作可變電阻。4、場效應管可以方便地用作恒流源。5、場效應管可以用作電子開關。場效應管的分類:場效應管分為結型場效應管(JFET)和絕緣柵場效應管(MOS管)兩大類。按溝道材料型和絕緣柵型各分N溝道和P溝道兩種;按導電方式:耗盡型與增強型,結型場效應管均為耗盡型,絕緣柵型場效應管既有耗盡型的,也有增強型的。場效應晶體管可分為結場效應晶體管和MOS場效應晶體管,而MOS場效應晶體管又分為N溝耗盡型和增強型;P溝耗盡型和增強型四大類。隨著半導體技術的不斷發展,場效應管性能不斷提升,有望在更多領域發揮重要作用。
在二極管加上正向電壓(P端接正極,N端接負極)時,二極管導通,其PN結有電流通過。這是因為在P型半導體端為正電壓時,N型半導體內的負電子被吸引而涌向加有正電壓的P型半導體端,而P型半導體端內的正電子則朝N型半導體端運動,從而形成導通電流。同理,當二極管加上反向電壓(P端接負極,N端接正極)時,這時在P型半導體端為負電壓,正電子被聚集在P型半導體端,負電子則聚集在N型半導體端,電子不移動,其PN結沒有電流通過,二極管截止。在柵極沒有電壓時,由前面分析可知,在源極與漏極之間不會有電流流過,此時場效應管處與截止狀態(圖7a)。當有一個正電壓加在N溝道的MOS場效應管柵極上時,由于電場的作用,此時N型半導體的源極和漏極的負電子被吸引出來而涌向柵極,但由于氧化膜的阻擋,使得電子聚集在兩個N溝道之間的P型半導體中,從而形成電流,使源極和漏極之間導通。可以想像為兩個N型半導體之間為一條溝,柵極電壓的建立相當于為它們之間搭了一座橋梁,該橋的大小由柵壓的大小決定。基本場效應管的特點包括輸入電阻高、輸入電容低。徐州絕緣柵場效應管加工
IGBT結合了場效應管和雙極晶體管的優點,適用于高電壓和高頻率的場合。江門增強型場效應管供應
SOA失效的預防措施:1:確保在較差條件下,MOSFET的所有功率限制條件均在SOA限制線以內。2:將OCP功能一定要做精確細致。在進行OCP點設計時,一般可能會取1.1-1.5倍電流余量的工程師居多,然后就根據IC的保護電壓比如0.7V開始調試RSENSE電阻。有些有經驗的人會將檢測延遲時間、CISS對OCP實際的影響考慮在內。但是此時有個更值得關注的參數,那就是MOSFET的Td(off)。它到底有什么影響呢,我們看下面FLYBACK電流波形圖(圖形不是太清楚,十分抱歉,建議雙擊放大觀看)。電流波形在快到電流尖峰時,有個下跌,這個下跌點后又有一段的上升時間,這段時間其本質就是IC在檢測到過流信號執行關斷后,MOSFET本身也開始執行關斷,但是由于器件本身的關斷延遲,因此電流會有個二次上升平臺,如果二次上升平臺過大,那么在變壓器余量設計不足時,就極有可能產生磁飽和的一個電流沖擊或者電流超器件規格的一個失效。江門增強型場效應管供應