干氣密封技術歷經四代革新,憑借非接觸式氣體潤滑成為離心壓縮機主流選擇。其主要在于動壓螺旋槽設計,通過泵送效應形成穩定氣膜,但需警惕污染、操作不當及設計缺陷導致的失效風險。干氣密封的發展與原理:離心式壓縮機,這一在氣體輸送和加壓方面發揮著關鍵作用的高速旋轉透平設備,其軸端密封技術已經歷了數代的革新。從早期的迷宮密封、浮環密封,再到后來的油膜機械密封,如今已邁入了全新的第四代——氣體潤滑端面密封,也就是我們常說的 干氣密封。這一技術以其非接觸式的氣體潤滑特點,成為了當前的主流選擇。在干氣密封中,氣體作為介質,可以有效防止介質與外界接觸,從而降低環境污染風險。四川原裝干氣密封廠家
結構特點1. 一級密封:一級密封通常采用單端面密封結構,即只有一個密封面與軸或軸套接觸,形成密封副。這種結構簡單緊湊,安裝和維護相對方便。2. 二級密封:二級密封則采用雙端面密封結構,具有兩個相對單獨的密封面。這種結構更加復雜,但提供了更高的密封可靠性和安全性。使用干氣密封設計,允許較大軸向竄量通常為± 2.5mm。允許較大徑向跳動通常為± 0.6mm。能在全壓下啟 /停, 同時要保證干凈、干燥,在一定溫度、一定的壓力下不碳化、不聚合的氣體作為干氣密封的工作氣源。必需始終保證干氣密封各個密封端面上、下游壓差為正壓差。單向旋轉槽型不可反向旋轉。開車時,先投后置隔離氣,再投軸承潤滑油。停車時,反之。天津干氣密封非標定制對于高溫蒸汽系統,干氣密封展現出突出的耐熱性能,是傳統密封方式無法比擬的選擇。
壓縮機干氣密封的原理:干氣密封是一種密封全部工藝氣壓力的非接觸式端面密封。該密封包括軸向浮動的碳化物環--靜環,和旋轉環--動環,旋轉環密封面的外徑部位刻有槽,槽的下面是被稱為密封壩的光滑區域。在軸處于靜止和機組未升壓時,靜環背后的彈簧使其與動環接觸。當機組升壓時氣體所產生的靜壓力將使得兩個環分開并形成一極薄的氣膜(約3m)。這間隙允許少量的密封氣泄漏。當機組開始旋轉時,由于動環上槽的作用把氣體向密封壩泵送,槽內壓力從外徑向內徑增加,靠近槽的根部產生一高壓區域,并擴大兩環間的間隙,同時泄漏量也增加。當彈簧力和氣體的靜壓力與槽和密封壩的流體動力相等時,密封面之間形成穩定的氣膜間隙。當間隙減小時,流體動力學作用使得端面之間的分離力迅速增加,間隙將擴大。間隙的增大時將導致打開力減小,間隙將減小。
隨著轉子的旋轉,氣體被逐漸泵送至螺旋槽的深處,而螺旋槽外部的無槽區域則形成了所謂的密封壩。這一密封壩對氣體流動產生阻礙,進而提升了氣體膜的壓力。在密封壩的內側,又設置了一系列反向螺旋槽,它們的作用是進行反向泵送,并優化配合表面的壓力分布,從而增強而開啟靜環與動環組件之間氣隙的能力。在這些反向螺旋槽的內部,同樣存在一段密封壩,同樣對氣體流動產生阻力,進一步增加氣體膜的壓力。通過這種巧妙的設計,配合表面間的壓力使得靜環表面與動環組件之間保持一個微小的間隙,通常約為3微米。當氣體壓力與彈簧力共同產生的閉合壓力與氣體膜的開啟壓力達到平衡時,便形成了穩定的間隙。隨著工業發展趨勢向自動化與環保方向邁進,干氣密封技術必將迎來更廣闊的發展前景。
串聯式干氣密封:此類密封方式同樣適用于允許少量工藝氣體泄漏至大氣的工況,一套串聯式干氣密封的構造,該密封方式可視為兩套或更多套干氣密封在相同方向上首尾相連而成。與單端面結構相似,此處使用的密封氣體同樣是工藝氣本身。通常,這種密封采用兩級結構,其中頭一級(主密封)承擔大部分負荷,而第二級則作為備用密封,不承受或只承受小部分壓力降。主密封泄漏出的工藝氣體被引入火炬進行燃燒處理。只有極少量的未燃燒工藝氣通過二級密封漏出,并被引入安全區域排放。若主密封失效,第二級密封將發揮輔助安全作用,確保工藝介質不會大量泄漏至大氣中。干氣密封的主要優點是其耐高溫、高壓性能,使其適用于各種極端工作環境。山東釜用干氣密封用途
為了適應不同介質的特性,干氣密封的材料選擇非常關鍵,需考慮耐溫、耐腐蝕等因素。四川原裝干氣密封廠家
當摩擦副出現磨損時,彈簧和密封流體壓力會推動動環進行補償,確保兩密封端面始終保持緊密接觸。在動、靜環中,具備軸向補償能力的被稱為補償環,而不具備的則被稱為非補償環。在圖中,動環被設定為補償環,而靜環則為非補償環。動環輔助密封圈的作用是防止介質可能沿動環與軸向間隙的泄露,而靜環輔助密封圈則負責阻止介質可能與端蓋之間的間隙泄露。在機械密封的工作過程中,輔助密封圈保持基本靜止,屬于靜密封范疇。同時,端蓋與密封腔體連接處的泄露也是靜密封的一部分,通常采用O型圈或墊片來進行密封。四川原裝干氣密封廠家