DLP結構光投影儀在3DSPI/AOI領域的應用1.SPI分類從檢測原理上來分SPI主要分為兩個大類,線激光掃描式與面結構光柵PMP技術。1.1激光掃描式的SPI通過三角量測的原理計算出錫膏的高度。此技術因為原理比較簡單,技術比較成熟,但是因為其本身的技術局限性如激光的掃描寬度偏長,單次取樣,雜訊干擾等,所以比較多的運用在對精度與重復性要求不高的錫厚測試儀,桌上型SPI等。在此不做過多敘述。1.2結構光柵型SPIPMP又稱PSP(PhaseShiftProfilometry)技術是一種基于正弦條紋投影和位相測量的光學三維面形測量技術。通過獲取全場條紋的空間信息與一個條紋周期內(nèi)相移條紋的時序信息,來完成物體三維信息的重建。由于其具有全場性、速度快、高精度、自動化程度高等特點,這種技術已在工業(yè)檢測、機器視覺、逆向工程等領域獲得廣泛應用。目前大部分的在線SPI設備都已經(jīng)升級到此種技術。但是它采用的離散相移技術要求有精確的正弦結構光柵與精確的相移,在實際系統(tǒng)中不可避免地存在著光柵圖像的非正弦化,相移誤差與隨機誤差,它將導致計算位相和重建面形的誤差。雖然已經(jīng)出現(xiàn)了不少算法能降低線性相移誤差,但要解決相移過程中的隨機相移誤差問題,還存在一定的困難。檢測誤判的定義及存在原困?全自動SPI檢測設備保養(yǎng)
8種常見SMT產(chǎn)線檢測技術(2)5.AOI自動光學檢查AOI自動光學檢測,利用光學和數(shù)字成像技術,采用計算機和軟件技術分析圖像而進行自動檢測的一種新型技術。AOI設備一般可分為在線式和離線式兩大類。AOI通過攝像頭自動掃描PCB,采集圖像,測試的焊點與數(shù)據(jù)庫中的合格的參數(shù)進行比較,經(jīng)過圖像處理,檢查出PCB上缺陷:缺件、錯件、壞件、錫球、偏移、側立、立碑、反貼、極反、橋連、虛焊、無焊錫、少焊錫、多焊錫、組件浮起、IC引腳浮起、IC引腳彎曲,并通過顯示器或自動標志把缺陷顯示/標示出來,供維修人員修整。6.X射線檢測(簡稱X-ray或AXI)X-Ray檢測是利用X射線可穿透物質(zhì)并在物質(zhì)中有衰減的特性來發(fā)現(xiàn)缺陷,主要檢測焊點內(nèi)部缺陷,如BGA、CSP和FC中Chip的焊點檢測。X射線檢測是利用X射線具備很強的穿透性,能穿透物體表面的性能,看透被檢焊點內(nèi)部,從而達到檢測和分析電子組件各種常見的焊點的焊接品質(zhì)。X-Ray檢測能充分反映出焊點的焊接質(zhì)量,包括開路、短路、孔、洞、內(nèi)部氣泡以及錫量不足,并能做到定量分析。X-ray檢測較大特點是能對BGA封裝器件下面的焊點缺陷,如橋接、開路、焊球丟失、移位、釬料不足、空洞、焊球和焊點邊緣模糊等內(nèi)部進行檢測。惠州SPI檢測設備設備3分鐘了解智能制造中的AOI檢測技術。
解決相移誤差的新技術PMP技術中另一個主要的基礎條件就是對于相移誤差的控制。相移法通過對投影光柵相位場進行移相來增加若干常量相位而得到多幅光柵圖來求解相位場。由于多幅相移圖比單幅相移圖提供了更多的信息,所以可以得到更高精度的結果。傳統(tǒng)的方式都依靠機械移動來實現(xiàn)相移。為達到精確的相移,都使用了比較高精度的馬達,如通過陶瓷壓電馬達(PZT),線性馬達加光柵尺等方式。并通過大量的算法來減少相移的誤差。可編程結構光柵因為其正弦光柵是通過軟件編程實現(xiàn)的,所以其在相移時也是通過軟件來實現(xiàn),通過此種技術可以使相移誤差趨向于“0”,提高了量測精度。并且此技術不需要機械部件,減少了設備的故障幾率,降低機械成本與維修成本。
那么SPI具有哪些作用呢?1.減少不良錫膏印刷是整個貼片組裝的第一步,而SPI是PCBA制造過程中質(zhì)量管控的第一步。SPI錫膏檢測設備的誕生,是為了在錫膏印刷過程中能夠密切監(jiān)視錫膏的印刷情況,在這一環(huán)節(jié)中利用機器檢測出錫膏印刷不良,如錫膏不足、錫膏過多、橋連等。實現(xiàn)在源頭上攔截錫膏不良,能夠避免不良印刷的PCB板流向下一個工序繼續(xù)生產(chǎn)而導致的產(chǎn)品不良。2.提高效率經(jīng)過回流焊接后檢查出來的不良板,需要經(jīng)過排計劃、拆料、洗板等工序,同時SMT加工有很多0201、01005的物料,這對廠家來說是一個長時間的返修工作。那么使用SPI提前檢測出來的不良板的維修時間要短很多且容易返修,可以立即返工并重新投進生產(chǎn),節(jié)省了很多時間的同時提高了生產(chǎn)效率。SPI的作用和檢測原理是什么?
兩種技術類別的3D-SPI(3D錫膏檢測機)性能比較:目前,主流的3D-SPI(3D錫膏檢測機)設備主要使用兩類技術:基于結構光相位調(diào)制輪廓測量技術(PMP)與基于激光測量技術(Laser)。相位調(diào)制輪廓測量技術(簡稱PMP),是一種基于結構光柵正弦運動投影,離散相移獲取多幅被照射物光場圖像,再根據(jù)多步相移法計算出相位分布,利用三角測量等方法得到高精度的物體外形輪廓和體積測量結果。PMP-3D-SPI可使用400萬像素或者的高速工業(yè)相機,實現(xiàn)大FOV范圍內(nèi)的錫膏三維測量以及錫膏高度方向上0.36um的解析度,在保證高速測量的同時,大幅度的提高測量精度。此外,PMP-3D-SPI可在視覺部分安裝多個投影頭,有效克服了錫膏3D測量的陰影效應。激光測量技術,采用傳統(tǒng)的激光光源投影出線狀光源,使相PSD或工業(yè)相機獲取圖像。激光3D-SPI使用飛行拍攝模式,在激光投影勻速移動的過程中一次性獲取錫膏的3D與2D信息。激光3D-SPI具有很快的檢測速度,但是不能在保證高精度的同時實現(xiàn)高速;激光光源響應好,不易受外界光照影響,此外,因為激光技術為傳統(tǒng)的模擬技術,激光3D-SPI的高分辨率為1um或2um。在目前的SMT設備市場中,使用激光測量類的廠商較多,更為先進的PMP-3D測量只有少數(shù)高級SPI在使用SPI(Serial Peripheral Interface)是一種串行通信協(xié)議。東莞多功能SPI檢測設備廠家價格
SPI檢測設備支持多路復用,節(jié)省系統(tǒng)資源。全自動SPI檢測設備保養(yǎng)
應用于3DSPI/AOI領域的DLP結構光投影模塊編碼結構光光源蓄勢待發(fā)在2D視覺時代,光源主要起到以下作用:1、照亮目標,提高亮度;2、形成有利于圖像處理的成像效果,降低系統(tǒng)的復雜性和對圖像處理算法的要求;3、克服環(huán)境光干擾,保證圖像穩(wěn)定性,提高系統(tǒng)的精度、效率;通過恰當?shù)墓庠凑彰髟O計,可以使圖像中的目標信息與背景信息得到比較好分離,這樣不僅極大降低圖像處理的算法難度,同時提高系統(tǒng)的精度和可靠性隨著3D視覺的興起,光源不僅用于照明,更重要的是用來產(chǎn)生編碼結構光,例如格雷碼、相移條紋、散斑等。DLP技術即因其高速、高分辨率、高精度、成熟穩(wěn)定、靈活性高等特性,在整個商用投影領域占據(jù)優(yōu)先地位。隨著市場需求的擴大,也被大量用于工業(yè)3D視覺領域,他的作用主要是投影結構光條紋。主流3D-SPI產(chǎn)品的檢測原理有相位輪廓測量術(PhaseMeasuringProfilometry,PMP)和激光三角輪廓測量術。全自動SPI檢測設備保養(yǎng)